

Page 1 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

4F-Topcoat drive-on white 10 kg

Art.: 9095838

1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses of the substance or mixture:

Coating

Uses advised against:

No information available at present.

1.3 Details of the supplier of the safety data sheet

BTI Befestigungstechnik GmbH & Co. KG

Salzstr. 51

74653 Ingelfingen Tel.: +49 7940 141 141 Fax: +49 7940 141 9141 Email: info@bti.de Homepage: www.bti.de

Qualified person's e-mail address: info@chemical-check.de, k.schnurbusch@chemical-check.de Please DO NOT use for requesting Safety Data Sheets.

1.4 Emergency telephone number

Emergency information services / official advisory body:

Telephone number of the company in case of emergencies:

+49 (0) 700 / 24 112 112 (BRC)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) 1272/2008 (CLP)

Hazard class	Hazard category	Hazard statement
Flam. Liq.	3	H226-Flammable liquid and vapour.
Acute Tox.	4	H332-Harmful if inhaled.
STOT RE	2	H373-May cause damage to organs through prolonged or
		repeated exposure (organs of hearing).
Eye Irrit.	2	H319-Causes serious eye irritation.
STOT SE	3	H335-May cause respiratory irritation.

Page 2 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Skin Irrit. 2 H315-Causes skin irritation. H334-May cause allergy or asthma symptoms or breathing Resp. Sens. 1 difficulties if inhaled. H317-May cause an allergic skin reaction. Skin Sens. 1 Asp. Tox. 1 H304-May be fatal if swallowed and enters airways. Aquatic Chronic 3 H412-Harmful to aquatic life with long lasting effects.

2.2 Label elements

Labeling according to Regulation (EC) 1272/2008 (CLP)

Danger

H226-Flammable liquid and vapour. H332-Harmful if inhaled. H373-May cause damage to organs through prolonged or repeated exposure (organs of hearing). H319-Causes serious eye irritation. H335-May cause respiratory irritation. H315-Causes skin irritation. H334-May cause allergy or asthma symptoms or breathing difficulties if inhaled. H317-May cause an allergic skin reaction. H304-May be fatal if swallowed and enters airways. H412-Harmful to aquatic life with long lasting effects.

P210-Keep away from heat, hot surfaces, sparks, open flames and other ignition sources. No smoking. P260-Do not breathe vapours or spray. P273-Avoid release to the environment. P280-Wear protective gloves / eye protection / face protection.

P301+P310-IF SWALLOWED: Immediately call a POISON CENTER / doctor. P304+P340-IF INHALED: Remove person to fresh air and keep comfortable for breathing. P312-Call a POISON CENTRE / doctor if you feel unwell. P331-Do NOT induce vomiting.

EUH204-Contains isocyanates. May produce an allergic reaction.

EUH211-Warning! Hazardous respirable droplets may be formed when sprayed. Do not breathe spray or mist.

As from 24 August 2023 adequate training is required before industrial or professional use.

Maleic anhydride

3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate

4,5-Dichloro-2-octyl-2H-isothiazol-3-one

1, 6-hexane diyl-bis (2-(2-(1-ethylpentyl)-3-oxazolidinyl) ethyl) carbamate

Isophoronediisocyanate, homopolymer

Reaction mass of ethylbenzene and m-xylene and p-xylene

Addition reaction products of conjugated sunflower-oil fatty acids and tall-oil fatty acids with maleic anhydride

2.3 Other hazards

The mixture does not contain any vPvB substance (vPvB = very persistent, very bioaccumulative) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

The mixture does not contain any PBT substance (PBT = persistent, bioaccumulative, toxic) or is not included under XIII of the regulation (EC) 1907/2006 < 0.1 %).

The mixture does not contain any substance with endocrine disrupting properties (< 0,1 %).

Page 3 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

SECTION 3: Composition/information on ingredients

3.1 Substances

n.a.

3.2 Mixtures

Reaction mass of ethylbenzene and m-xylene and p-	Substance for which an EU exposure limit
xylene	value applies.
Registration number (REACH)	01-2119488216-32-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	905-562-9
CAS	
content %	25-<35
Classification according to Regulation (EC) 1272/2008	Flam. Liq. 3, H226
(CLP), M-factors	Acute Tox. 4, H312
	Acute Tox. 4, H332
	Skin Irrit. 2, H315
	Eye Irrit. 2, H319
	STOT SE 3, H335
	STOT RE 2, H373 (organs of hearing)
	Asp. Tox. 1, H304
	Aquatic Chronic 3, H412

Titanium dioxide (in powder form containing 1 % or	
more of particles with aerodynamic diameter <= 10 μm)	
Registration number (REACH)	
Index	022-006-002
EINECS, ELINCS, NLP, REACH-IT List-No.	236-675-5
CAS	13463-67-7
content %	15-<20
Classification according to Regulation (EC) 1272/2008	Carc. 2, H351 (as inhalation)
(CLP), M-factors	

2-methoxy-1-methylethyl acetate	Substance for which an EU exposure limit
	value applies.
Registration number (REACH)	01-2119475791-29-XXXX
Index	607-195-00-7
EINECS, ELINCS, NLP, REACH-IT List-No.	203-603-9
CAS	108-65-6
content %	3-<5
Classification according to Regulation (EC) 1272/2008	Flam. Liq. 3, H226
(CLP), M-factors	

1,6-hexanediyl-bis(2-(2-(1-ethylpentyl)-3-	
oxazolidinyl)ethyl)carbamate	
Registration number (REACH)	01-0000015906-63-XXXX
Index	616-079-00-5
EINECS, ELINCS, NLP, REACH-IT List-No.	411-700-4
CAS	140921-24-0

Page 4 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

content %	3-<5
Classification according to Regulation (EC) 1272/2008	Skin Sens. 1, H317
(CLP), M-factors	

Isophoronediisocyanate, homopolymer	
Registration number (REACH)	01-2119488734-24-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	931-312-3
CAS	
content %	3-<5
Classification according to Regulation (EC) 1272/2008	Skin Sens. 1B, H317
(CLP), M-factors	STOT SE 3, H335

3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate	
Registration number (REACH)	01-2119490408-31-XXXX
Index	615-008-00-5
EINECS, ELINCS, NLP, REACH-IT List-No.	223-861-6
CAS	4098-71-9
content %	0,5-<1
Classification according to Regulation (EC) 1272/2008	Acute Tox. 3, H331
(CLP), M-factors	Skin Irrit. 2, H315
	Eye Irrit. 2, H319
	Resp. Sens. 1, H334
	Skin Sens. 1, H317
	STOT SE 3, H335
	Aquatic Chronic 2, H411
Specific Concentration Limits and ATE	Skin Sens. 1, H317: >=0,5 %
	Resp. Sens. 1, H334: >=0,5 %

Addition reaction products of conjugated sunflower-oil	
fatty acids and tall-oil fatty acids with maleic anhydride	
Registration number (REACH)	01-2119976378-19-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	
CAS	
content %	0,1-<1
Classification according to Regulation (EC) 1272/2008	Skin Irrit. 2, H315
(CLP), M-factors	Skin Sens. 1, H317

Maleic anhydride	
Registration number (REACH)	01-2119472428-31-XXXX
Index	607-096-00-9
EINECS, ELINCS, NLP, REACH-IT List-No.	203-571-6
CAS	108-31-6
content %	0,001-<0,1

Page 5 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Classification according to Regulation (EC) 1272/2008	Acute Tox. 4, H302
(CLP), M-factors	Skin Corr. 1B, H314
	Eye Dam. 1, H318
	Resp. Sens. 1, H334
	Skin Sens. 1A, H317
	STOT RE 1, H372 (respiratory system) (as
	inhalation)
Specific Concentration Limits and ATE	Skin Sens. 1A, H317: 0,001 %

4,5-Dichloro-2-octyl-2H-isothiazol-3-one	
Registration number (REACH)	
Index	613-335-00-8
EINECS, ELINCS, NLP, REACH-IT List-No.	264-843-8
CAS	64359-81-5
content %	0,0015-<0,0025
Classification according to Regulation (EC) 1272/2008	Acute Tox. 2, H330
(CLP), M-factors	Acute Tox. 4, H302
	Skin Corr. 1, H314
	Eye Dam. 1, H318
	Skin Sens. 1A, H317
	Aquatic Acute 1, H400 (M=100)
	Aquatic Chronic 1, H410 (M=100)
Specific Concentration Limits and ATE	Skin Irrit. 2, H315: >=0,025 %
	Eye Irrit. 2, H319: >=0,025 %
	Skin Sens. 1A, H317: >=0,0015 %
	ATE (oral): 567 mg/kg
	ATE (as inhalation, Mist): 0,16 mg/l/4h

For the text of the H-phrases and classification codes (GHS/CLP), see Section 16. The substances named in this section are given with their actual, appropriate classification! For substances that are listed in appendix VI, table 3.1 of the regulation (EC) no. 1272/2008 (CLP regulation) this means that all notes that may be given here for the named classification have been taken into account.

SECTION 4: First aid measures

4.1 Description of first aid measures

First-aiders should ensure they are protected!

Never pour anything into the mouth of an unconscious person!

Inhalation

Remove person from danger area.

Supply person with fresh air and consult doctor according to symptoms.

If the person is unconscious, place in a stable side position and consult a doctor.

Skin contact

Remove polluted, soaked clothing immediately, wash thoroughly with plenty of water and soap, in case of irritation of the skin (flare), consult a doctor.

Eye contact

Remove contact lenses.

Wash thoroughly for several minutes using copious water. Seek medical help if necessary.

Ingestion

Rinse the mouth thoroughly with water.

Page 6 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Do not induce vomiting. Consult doctor immediately.

Danger of aspiration.

In case of vomiting, keep head low so that the stomach content does not reach the lungs.

4.2 Most important symptoms and effects, both acute and delayed

If applicable delayed symptoms and effects can be found in section 11 and the absorption route in section 4.1. In certain cases, the symptoms of poisoning may only appear after an extended period / after several hours.

Watering eyes

Drying of the skin.

Dermatitis (skin inflammation)

Allergic reaction possible.

In case of sensitivity, concentrations below the limit value may already result in asthmatic symptoms.

Ingestion:

Nausea

Vomiting

Danger of aspiration.

Oedema of the lungs

Chemical pneumonitis (condition similar to pneumonia)

4.3 Indication of any immediate medical attention and special treatment needed

Gastric lavage (stomach washing) only under endotracheal intubation.

Subsequent observation for pneumonia and pulmonary oedema.

SECTION 5: Firefighting measures

5.1 Extinguishing media

Suitable extinguishing media

Water jet spray/foam/CO2/dry extinguisher

Unsuitable extinguishing media

High volume water jet

5.2 Special hazards arising from the substance or mixture

In case of fire the following can develop:

Oxides of carbon

Oxides of nitrogen

Hydrogen cyanide

Toxic gases

Explosive vapour/air or gas/air mixtures.

5.3 Advice for firefighters

For personal protective equipment see Section 8.

In case of fire and/or explosion do not breathe fumes.

Protective respirator with independent air supply.

According to size of fire

Full protection, if necessary.

Cool container at risk with water.

Dispose of contaminated extinction water according to official regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

Page 7 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

In case of spillage or accidental release, wear personal protective equipment as specified in section 8 to prevent contamination.

Ensure sufficient ventilation, remove sources of ignition.

Avoid dust formation with solid or powder products.

Leave the danger zone if possible, use existing emergency plans if necessary.

Keep unprotected persons away.

Avoid contact with eyes or skin.

If applicable, caution - risk of slipping.

6.1.2 For emergency responders

See section 8 for suitable protective equipment and material specifications.

6.2 Environmental precautions

If leakage occurs, dam up.

Resolve leaks if this possible without risk.

Prevent surface and ground-water infiltration, as well as ground penetration.

Prevent from entering drainage system.

If accidental entry into drainage system occurs, inform responsible authorities.

6.3 Methods and material for containment and cleaning up

Soak up with absorbent material (e.g. universal binding agent, sand, diatomaceous earth, sawdust) and dispose of according to Section 13.

Fill the absorbed material into lockable containers.

6.4 Reference to other sections

For personal protective equipment see Section 8 and for disposal instructions see Section 13.

SECTION 7: Handling and storage

In addition to information given in this section, relevant information can also be found in section 8 and 6.1.

7.1 Precautions for safe handling

7.1.1 General recommendations

Ensure good ventilation.

Avoid inhalation of the vapours.

Keep away from sources of ignition - Do not smoke.

Take precautions against electrostatic charges.

Avoid contact with eyes or skin.

No contact with products of this type in case of allergies, asthma und chronic respiratory tract disorders.

Eating, drinking, smoking, as well as food-storage, is prohibited in work-room.

Observe directions on label and instructions for use.

Use working methods according to operating instructions.

7.1.2 Notes on general hygiene measures at the workplace

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

7.2 Conditions for safe storage, including any incompatibilities

Keep out of access to unauthorised individuals.

Store product closed and only in original packing.

Not to be stored in gangways or stair wells.

Observe special storage conditions.

Under all circumstances prevent penetration into the soil.

Do not store with flammable or self-igniting materials.

Protect from direct sunlight and warming.

Œ

Page 8 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Store in a well ventilated place.

Store cool.

7.3 Specific end use(s)

No information available at present.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

©B Chemical Name	Reaction mass	s of ethylbenzene and m-xy	lene and p-xylene		Content %:25-<35
WEL-TWA: 220 mg/m3 (5	50 ppm)	WEL-STEL: 100 ppm	(441 mg/m3		
(WEL), 50 ppm (221 mg/m3) (EU)	(WEL), 100 ppm (442 mg	g/m3) (EU)		
(Xylene), 100 ppm (441mg/	/m3) (WEL),	(Xylene), 125 ppm (552	mg/m3) (WEL),		
100 ppm (442 mg/m3) (EU)		200 ppm (884 mg/m3) (E	CU)		
(Ethylbenzene)		(Ethylbenzene)			
Monitoring procedures:]	INSHT MTA/MA-030/A92	(Determination of	aromati	С
	1	hydrocarbons (benzene, tole	uene, ethylbenzene,	p-xyler	ne, 1,2,4-
	t	trimethylbenzene) in air - C	harcoal tube method	d / Gas	
		chromatography) - 1992 - E	EU project BC/CEN	/ENTR/	000/2002-16
	- (card 47-1 (2004)			
	- (OSHA 1002 (Xylenes (o-, r	n-, p-isomers) Ethyl	lbenzen	e) - 1999
	-]	Draeger - Hydrocarbons 0,1	1%/c (81 03 571)		
	-]	Draeger - Hydrocarbons 2/a	ı (81 03 581)		
BMGV: 650 mmol methyl	hippuric acid/m	nol creatinine in urine,	Other information	: Sk (WEL)
post shift (Xylene, o-, m-, p-	or mixed isome	ers) (BMGV) (Xylene)	(Xylene), Sk (WE	EL) (Eth	ylbenzene)
©B Chemical Name		ide (in powder form contai		f	Content
WFL-TWA: 10 mg/m3 (to	_	aerodynamic diameter <= 1	10 μm)		%:15-<20

(GB)	Chemical Name	ide (in powder i	form cont	taining 1 % or more of	Content	
	particles with aerodynamic diameter $\ll 10 \mu m$)			= 10 μm)	%:15-<20	
WE	L-TWA: 10 mg/m3 (to	tal inhalable	WEL-STEL:			
dust), 4 mg/m3 (respirable di	ust)				
Mor	nitoring procedures:	-				
BM	GV:				Other information:	
(B)	CI IN	2 1 1	4 1 4 1			Content %:3-

Chemical Name	2-methoxy-1-methyleth	yl acetate		Content %:3- <5
WEL-TWA: 50 ppm (274)	ig/m3) WEL-S	TEL: 100 ppm (548 mg/m3)		
(WEL), 50 ppm (275 mg/m3	(EU) (WEL),	100 ppm (550 mg/m3) (EU)		
Monitoring procedures:	INSHT M	TA/MA-024/A92 (Determination of	esters I	I (1-methoxy-
	2-propyl a	cetate, 2-ethoxyethyl acetate) in air -	Charco	al tube
	method /	Gas chromatography) - 1992 - EU pro	ject	
	- BC/CEN/	ENTR/000/2002-16 card 15-1 (2004)		
	- NIOSH 2.	554 (GLYCOL ETHERS) - 2003		
	- OSHA 99	(Propylene Glycol Monomethyl Ethe	ers/Ace	tates) - 1993
BMGV:		Other information	: Sk (WEL)

(B)	Chemical Name	3-isocyanaton	nethyl-3,5,5-trimethylcyclohexyl isocyanate	Content %:0,5-<1
W	EL-TWA: 0,02 mg/m3 (Isocyanates,	WEL-STEL: 0,07 mg/m3 (Isocyanates,	
al	l (as -NCO))		all (as -NCO))	

Page 9 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Monitoring procedures:	ISO 16702 (Workplace air	quality – determination of total
	isocyanate groups in air usi	ng 2-(1-methoxyphenylpiperazine and
-	liquid chromatography) - 20	007
	MDHS 25/4 (Organic isocy	vanates in air – Laboratory method using
	sampling either onto 2-(1-m	nethoxyphenylpiperazine coated glass
	fibre filters followed by sol	vent desorption or into impingers and
	analysis using high perform	nance liquid chromatography) - 2015 -
-	EU project BC/CEN/ENTR	2/000/2002-16 card 56-3 (2004)
-	NIOSH 5525 (ISOCYANA	TES, TOTAL (MAP)) - 2003
-	OSHA PV2034 (Isophoron	e Diisocyanate (IPDI)) - 1988
BMGV: 1 µmol isocyanate-derived diam	nine/mol creatinine in urine	Other information: Sen (Isocyanates,
(At the end of the period of exposure)		all (as -NCO))

	· · · · · · · · · · · · · · · · · · ·	<u> </u>		(
(B)	Chemical Name	Maleic anhydride				Content %:0,001-
						< 0,1
W	EL-TWA: 1 mg/m3	WEL-STEL:	3 mg/m3			
M	onitoring procedures:					
Bl	MGV:			Other information:	Sen	

Reaction mass of ethyl	Reaction mass of ethylbenzene and m-xylene and p-xylene						
Area of application	Exposure route /	Effect on health	Descript	Value	Unit	Note	
	Environmental		or				
	compartment						
	Environment -		PNEC	0,327	mg/l		
	freshwater						
	Environment - marine		PNEC	0,327	mg/l		
	Environment -		PNEC	12,46	mg/kg		
	sediment, freshwater						
	Environment -		PNEC	12,46	mg/kg		
	sediment, marine						
	Environment - soil		PNEC	2,31	mg/kg		
	Environment -		PNEC	6,58	mg/l		
	sewage treatment						
	plant						
Workers / employees	Human - inhalation	Long term,	DNEL	221	mg/m3		
		systemic effects					
Workers / employees	Human - inhalation	Short term,	DNEL	442	mg/m3		
		systemic effects					

Titanium dioxide (in p μm)	owder form containing	1 % or more of par	ticles with a	erodyna	mic diame	ter <= 10
Area of application	Exposure route /	Effect on health	Descript	Value	Unit	Note
	Environmental		or			
	compartment					
	Environment -		PNEC	0,184	mg/l	
	freshwater					
	Environment - marine		PNEC	0,018	mg/l	
				4		

Page 10 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

	Environment - water, sporadic (intermittent) release		PNEC	0,193	mg/l
	Environment - sewage treatment plant		PNEC	100	mg/l
	Environment - sediment, freshwater		PNEC	1000	mg/kg dw
	Environment - sediment, marine		PNEC	100	mg/kg dw
	Environment - soil		PNEC	100	mg/kg dw
	Environment - oral (animal feed)		PNEC	1667	mg/kg feed
Consumer	Human - oral	Long term, systemic effects	DNEL	700	mg/kg bw/d
Workers / employees	Human - inhalation	Long term, local effects	DNEL	10	mg/m3

2-methoxy-1-methyle	thyl acetate					
Area of application	Exposure route / Environmental compartment	Effect on health	Descript or	Value	Unit	Note
	Environment - freshwater		PNEC	0,635	mg/l	
	Environment - sediment, freshwater		PNEC	3,29	mg/kg	
	Environment - sediment, marine		PNEC	0,329	mg/kg	
	Environment - soil		PNEC	0,29	mg/kg	
	Environment - sewage treatment plant		PNEC	100	mg/l	
	Environment - marine		PNEC	0,063 5	mg/l	
	Environment - water, sporadic (intermittent) release		PNEC	6,35	mg/l	
Consumer	Human - inhalation	Long term, systemic effects	DNEL	33	mg/m3	
Consumer	Human - dermal	Long term, systemic effects	DNEL	54,8	mg/kg	
Consumer	Human - oral	Long term, systemic effects	DNEL	1,67	mg/kg	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	153,5	mg/kg	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	275	mg/m3	

Page 11 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Maleic anhydride Area of application	Exposure route /	Effect on health	Descript	Value	Unit	Note
**	Environmental		or			
	compartment					
	Environment -		PNEC	0,042	mg/l	
	freshwater		11,20	81	1116/1	
	Environment - marine		PNEC	0,004 281	mg/l	
	Environment - water, sporadic (intermittent) release		PNEC	0,428	mg/l	
	Environment - sewage treatment plant		PNEC	44,6	mg/l	
	Environment - sediment, freshwater		PNEC	0,334	mg/l	
	Environment - sediment, marine		PNEC	0,033 4	mg/l	
	Environment - soil		PNEC	0,041 5	mg/l	
Workers / employees	Human - dermal	Short term, systemic effects	DNEL	0,04	mg/kg body weight/d ay	
Workers / employees	Human - inhalation	Short term, systemic effects	DNEL	0,8	mg/m3	
Workers / employees	Human - dermal	Short term, local effects	DNEL	0,04	mg/cm2	
Workers / employees	Human - inhalation	Short term, local effects	DNEL	0,8	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,04	mg/kg	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	0,4	mg/m3	
Workers / employees	Human - dermal	Long term, local effects	DNEL	0,04	mg/kg body weight/d ay	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	0,4	mg/m3	

WEL-TWA = Workplace Exposure Limit - Long-term exposure limit (8-hour TWA (= time weighted average) reference period) EH40. AGW = "Arbeitsplatzgrenzwert" (workplace limit value, Germany). (8) = Inhalable fraction (Directive 2017/164/EU, Directive 2004/37/CE). (9) = Respirable fraction (Directive 2017/164/EU, Directive 2004/37/CE). (11) = Inhalable fraction (Directive 2004/37/CE). (12) = Inhalable fraction. Respirable fraction in those Member States that implement, on the date of the entry into force of this Directive, a biomonitoring system with a biological limit value not exceeding 0,002 mg Cd/g creatinine in urine (Directive 2004/37/CE). | WEL-STEL = Workplace Exposure Limit - Short-term exposure limit (15-minute reference period).

 $(8) = Inhalable\ fraction\ (2017/164/EU,\ 2017/2398/EU).\ (9) = Respirable\ fraction\ (2017/164/EU,\ 2017/2398/EU).$ $(10) = Short\ term\ exposure\ limit\ value\ in\ relation\ to\ a\ reference\ period\ of\ 1\ minute\ (2017/164/EU).\ |\ BMGV=Biological\ monitoring\ guidance\ value\ EH40.\ BGW="Biologischer\ Grenzwert"\ (biological\ limit\ value,$

Page 12 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Germany) | Other information: Sen = Capable of causing occupational asthma. Sk = Can be absorbed through skin. Carc = Capable of causing cancer and/or heritable genetic damage.

** = The exposure limit for this substance is repealed through the TRGS 900 (Germany) of January 2006 with the goal of revision.

(13) = The substance can cause sensitisation of the skin and of the respiratory tract (Directive 2004/37/CE), (14) = The substance can cause sensitisation of the skin (Directive 2004/37/CE).

8.2 Exposure controls

8.2.1 Appropriate engineering controls

Ensure good ventilation. This can be achieved by local suction or general air extraction.

If this is insufficient to maintain the concentration under the WEL or AGW values, suitable breathing protection should be worn.

Applies only if maximum permissible exposure values are listed here.

Suitable assessment methods for reviewing the effectiveness of protection measures adopted include metrological and non-metrological investigative techniques.

These are specified by e.g. EN 14042.

EN 14042 "Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents".

8.2.2 Individual protection measures, such as personal protective equipment

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Eye/face protection:

Tight fitting protective goggles with side protection (EN 166).

Skin protection - Hand protection:

Chemical resistant protective gloves (EN ISO 374).

Recommended

Protective gloves in butyl rubber (EN ISO 374).

Minimum layer thickness in mm:

>=0.5

Protective gloves made of fluorocarbon rubber (EN ISO 374).

Minimum layer thickness in mm:

>=0.4

Permeation time (penetration time) in minutes:

>= 480

The breakthrough times determined in accordance with EN 16523-1 were not obtained under practical conditions.

The recommended maximum wearing time is 50% of breakthrough time.

Protective hand cream recommended.

Skin protection - Other:

Protective working garments (e.g. safety shoes EN ISO 20345, long-sleeved protective working garments).

Respiratory protection:

If OES or MEL is exceeded.

Filter A2 P2 (EN 14387), code colour brown, white

Page 13 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Observe wearing time limitations for respiratory protection equipment.

Thermal hazards: Not applicable

Additional information on hand protection - No tests have been performed.

In the case of mixtures, the selection has been made according to the knowledge available and the information about the contents

Selection of materials derived from glove manufacturer's indications.

Final selection of glove material must be made taking the breakthrough times, permeation rates and degradation into account.

Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to manufacturer.

In the case of mixtures, the resistance of glove materials cannot be predicted and must therefore be tested before use.

The exact breakthrough time of the glove material can be requested from the protective glove manufacturer and must be observed.

8.2.3 Environmental exposure controls

No information available at present.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state: Liquid

Colour: According to specification

Odour: Characteristic
Odour threshold: Not determined

pH-value: Mixture is non-soluble (in water).

Melting point/freezing point:

Initial boiling point and boiling range:

Not determined

Not determined

Flash point: 35 °C

Evaporation rate: Not determined

Flammability (solid, gas):

Lower explosive limit:

Upper explosive limit:

Vapour pressure:

Vapour density (air = 1):

Density:

n.a.

0,7 Vol-%

7,5 Vol-%

Not determined

Not determined

1,15 g/cm3 (20°C)

Bulk density: n.a.

Solubility(ies):

Water solubility:

Partition coefficient (n-octanol/water):

Not determined

Not determined

Auto-ignition temperature: 488 °C (Ignition temperature)

Decomposition temperature: Not determined Viscosity: Not determined

Explosive properties: Product is not explosive. When using: development of

explosive vapour/air mixture possible.

Oxidising properties: No

9.2 Other information

Page 14 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Miscibility: Not determined
Fat solubility / solvent: Not determined
Conductivity: Not determined
Surface tension: Not determined

Solvents content: 450 g/l (Organic solvents)

SECTION 10: Stability and reactivity

10.1 Reactivity

The product has not been tested.

10.2 Chemical stability

Stable with proper storage and handling.

10.3 Possibility of hazardous reactions

No dangerous reactions are known.

10.4 Conditions to avoid

Heating, open flame, ignition sources

Electrostatic charge

10.5 Incompatible materials

Avoid contact with strong oxidizing agents.

10.6 Hazardous decomposition products

No decomposition when used as directed.

SECTION 11: Toxicological information

11.1 Information on toxicological effects

Possibly more information on health effects, see Section 2.1 (classification).

4F-Topcoat drive-on wh	ite 10 kg					
Art.: 9095838						
Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
	nt					
Acute toxicity, by oral route:						n.d.a.
Acute toxicity, by	ATE	2933	mg/kg			calculated
dermal route:						value
Acute toxicity, by	ATE	34,6	mg/l/4h			calculated
inhalation:						value,
						Vapours
Acute toxicity, by	ATE	3,26	mg/l/4h			calculated
inhalation:						value,
						Aerosol
Skin corrosion/irritation:						n.d.a.
Serious eye						n.d.a.
damage/irritation:						
Respiratory or skin						n.d.a.
sensitisation:						
Germ cell mutagenicity:						n.d.a.
Carcinogenicity:						n.d.a.
Reproductive toxicity:						n.d.a.

Page 15 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Specific target organ			n.d.a.
toxicity - single			
exposure (STOT-SE):			
Specific target organ			n.d.a.
toxicity - repeated			
exposure (STOT-RE):			
Aspiration hazard:			Asp. Tox. 1
Symptoms:			n.d.a.

Reaction mass of ethylbe	enzene and	m-xylene and	d p-xylene	!		
Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
	nt					
Acute toxicity, by oral	LD50	3523	mg/kg	Rat	Regulation (EC)	
route:					440/2008 B.1	
					(ACUTE ORAL	
					TOXICITY)	
Acute toxicity, by	LC50	6350	ppm	Rat	Regulation (EC)	Vapours
inhalation:					440/2008 B.2	
					(ACUTE	
					TOXICITY	
					(INHALATION))	
Germ cell mutagenicity:					OECD 478	Negative,
					(Genetic	Analogous
					Toxicology -	conclusion
					Rodent dominant	
					Lethal Test)	
Germ cell mutagenicity:				Salmonella	OECD 471	Negative,
				typhimuri	(Bacterial Reverse	Analogous
				um	Mutation Test)	conclusion
Aspiration hazard:						Asp. Tox. 1

Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 425 (Acute Oral Toxicity - Up-and-Down Procedure)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	,	
Acute toxicity, by inhalation:	LD50	>6,8	mg/l/4h	Rat		
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute Dermal Irritation/Corrosio n)	Not irritan
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye Irritation/Corrosio n)	Not irritan Mechanica irritation possible.

Page 16 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Respiratory or skin sensitisation:				Mouse	OECD 429 (Skin Sensitisation - Local Lymph Node Assay)	Not sensitizising
Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	No (skin contact)
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian Erythrocyte Micronucleus Test)	Negative
Germ cell mutagenicity:				Mammalia n	OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	Negative
Germ cell mutagenicity:				Salmonella typhimuri um	(Ames-Test)	Negative
Germ cell mutagenicity:					OECD 476 (In Vitro Mammalian Cell Gene Mutation Test)	Negative
Germ cell mutagenicity:					OECD 471 (Bacterial Reverse Mutation Test)	Negative
Reproductive toxicity (Developmental toxicity):				Rat	OECD 414 (Prenatal Developmental Toxicity Study)	No indications of such an effect.
Specific target organ toxicity - single exposure (STOT-SE):						Not irritant (respiratory tract).
Symptoms:						mucous membrane irritation, coughing, respiratory distress, drying of the skin.
Specific target organ toxicity - repeated exposure (STOT-RE), oral:	NOAEL	3500	mg/kg/ d	Rat		90d
Specific target organ toxicity - repeated exposure (STOT-RE), inhalat.:	NOAEC	10	mg/m3	Rat		90d

2-methoxy-1-methylethyl acetate

Page 17 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
	nt					
Acute toxicity, by oral	LD50	>5000	mg/kg	Rabbit	OECD 401 (Acute	
route:					Oral Toxicity)	
Acute toxicity, by	LD50	>5000	mg/kg	Rat		
dermal route:						
Acute toxicity, by	LC50	>23,8	mg/l/6h	Rat		
inhalation:						
Acute toxicity, by inhalation:	LC50	35,7	mg/l/4h	Rat		Vapours
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant
					Dermal	
					Irritation/Corrosio	
					n)	
Serious eye				Rabbit		Mild irritant
damage/irritation:						
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin
sensitisation:					Sensitisation)	contact)
Germ cell mutagenicity:					OECD 471	No
					(Bacterial Reverse	indications
					Mutation Test)	of such an
						effect.
Symptoms:						respiratory
						distress,
						drowsiness,
						unconsciousn
						ess,
						vomiting,
						headaches,
						mucous
						membrane
						irritation,
						dizziness,
						nausea

1,6-hexanediyl-bis(2-(2-(1-ethylpen	tyl)-3-oxazo	olidinyl)ethy	yl)carbamate		
Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
	nt					
Acute toxicity, by oral route:	LD50	>2000	mg/kg	Rat		
Acute toxicity, by dermal route:	LD50	>2000	mg/kg	Rat		
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute Dermal Irritation/Corrosio n)	Not irritant
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye Irritation/Corrosio n)	Not irritant

Page 18 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Respiratory or skin				Human	OECD 406 (Skin	Sensitising
sensitisation:				being	Sensitisation)	(skin
						contact)
Germ cell mutagenicity:					OECD 474	Negative
					(Mammalian	
					Erythrocyte	
					Micronucleus	
					Test)	
Germ cell mutagenicity:				Salmonella	OECD 471	Negative
				typhimuri	(Bacterial Reverse	
				um	Mutation Test)	
Specific target organ	NOAEL	200	mg/kg	Rat	OECD 407	
toxicity - repeated					(Repeated Dose	
exposure (STOT-RE):					28-Day Oral	
					Toxicity Study in	
					Rodents)	

Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes
	nt					
Acute toxicity, by oral	LD50	4825	mg/kg	Rat		
route:						
Acute toxicity, by	LD50	>7000	mg/kg	Rat		
dermal route:						
Skin corrosion/irritation:						Irritant
Serious eye						Irritant
damage/irritation:						
Respiratory or skin						Sensitising
sensitisation:						(inhalation
						and skin
						contact)
Symptoms:						asthmatic
						symptoms,
						ataxia,
						breathing
						difficulties,
						respiratory
						distress,
						eyes,
						reddened,
						coughing,
						mucous
						membrane
						irritation,
						trembling
Specific target organ						Irritation of
toxicity - single						the
exposure (STOT-SE),						respiratory
inhalative:						tract

Page 19 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Toxicity / effect	Endpoi nt	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral	LD50	>2000	mg/kg	Rat	OECD 423 (Acute	
route:	LD30	22000	mg/kg	Rat	Oral Toxicity -	
route.					Acute Toxic Class	
					Method)	
Skin corrosion/irritation:					OECD 439 (In	Skin Irrit. 2
Skiii Collosioli illiaalion.					Vitro Skin	
					Irritation -	
					Reconstructed	
					Human Epidermis	
					Test Method)	
Serious eye				Rabbit	OECD 405 (Acute	Not irritant
damage/irritation:				Rabbit	Eye	110t IIIItani
damage/irritation.					Irritation/Corrosio	
					n)	
Respiratory or skin				Mouse	OECD 429 (Skin	Sensitising
sensitisation:				Wiouse	Sensitisation -	(skin
sensitisation.					Local Lymph	contact)
					Node Assay)	Contact)
Germ cell mutagenicity:					OECD 471	Negative
Germ cen matagemeny.					(Bacterial Reverse	riegutive
					Mutation Test)	
Reproductive toxicity	NOAEL	>=1000	mg/kg	Rat	OECD 422	
(Developmental	1,0122	7 1000	1119/119	1100	(Combined	
toxicity):					Repeated Dose	
tomenty).					Tox. Study with	
					the	
					Reproduction/Dev	
					elopm. Tox.	
					Screening Test)	
Reproductive toxicity	NOAEL	1000	mg/kg	Rat	OECD 422	
(Effects on fertility):		1000			(Combined	
(Repeated Dose	
					Tox. Study with	
					the	
					Reproduction/Dev	
					elopm. Tox.	
					Screening Test)	

Maleic anhydride								
Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes		
	nt							
Acute toxicity, by oral	LD50	1090	mg/kg	Rat	OECD 401 (Acute			
route:					Oral Toxicity)			
Acute toxicity, by	LD50	2620	mg/kg	Rabbit				
dermal route:								
Acute toxicity, by	LC50	>4,35	mg/l/4h	Mouse				
inhalation:								

Page 20 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Skin corrosion/irritation:				Human being		Corrosive
Skin corrosion/irritation:				Rat		Corrosive
Serious eye damage/irritation:				Rabbit		Corrosive, Risk of serious damage to
Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	eyes. Sensitising (skin contact)
Respiratory or skin sensitisation:				Rat		Sensitising (inhalation)
Germ cell mutagenicity:					bacterial	References, Negative
Carcinogenicity:	NOAEL	>100	mg/kg bw/d	Rat		oral
Reproductive toxicity:	NOAEC	650	mg/kg bw/d	Rat		
Symptoms:						asthmatic symptoms, breathing difficulties, respiratory distress, burning of the membranes of the nose and throat, blisters, coughing, headaches, gastrointestin al disturbances, mucous membrane irritation, watering eyes, nausea

4,5-Dichloro-2-octyl-2H-isothiazol-3-one								
Toxicity / effect	Endpoi	Value	Unit	Organism	Test method	Notes		
	nt							
Acute toxicity, by oral	ATE	567	mg/kg					
route:								
Acute toxicity, by	ATE	0,16	mg/l/4h			Dust, Mist		
inhalation:								

Page 21 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Corrosive
					Dermal	
					Irritation/Corrosio	
					n)	
Respiratory or skin				Guinea pig	OECD 406 (Skin	Skin Sens.
sensitisation:					Sensitisation)	1A
Aspiration hazard:						No
Specific target organ	NOAEL	20	mg/kg	Rat		28d
toxicity - repeated						
exposure (STOT-RE),						
oral:						
Specific target organ	LOAEL	100	mg/kg	Rat		28d
toxicity - repeated						
exposure (STOT-RE),						
oral:						

SECTION 12: Ecological information

Possibly more information on environmental effects, see Section 2.1 (classification).

4F-Topcoat drive-o	4F-Topcoat drive-on white 10 kg										
Art.: 9095838											
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes				
12.1. Toxicity to							n.d.a.				
fish:											
12.1. Toxicity to							n.d.a.				
daphnia:											
12.1. Toxicity to							n.d.a.				
algae:											
12.2. Persistence							n.d.a.				
and degradability:											
12.3.							n.d.a.				
Bioaccumulative											
potential:											
12.4. Mobility in							n.d.a.				
soil:											
12.5. Results of							n.d.a.				
PBT and vPvB											
assessment											
12.6. Other							n.d.a.				
adverse effects:											

Reaction mass of ethylbenzene and m-xylene and p-xylene											
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes				
12.5. Results of							No PBT				
PBT and vPvB							substance,				
assessment							No vPvB				
							substance				
Toxicity to	NOEC/NO	14d	16	mg/kg							
annelids:	EL			dw							

Page 22 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

dpoint	Time					
		Walna	Unit	Organism	Test method	Notes
'5A	96h	Value >100	mg/l	Oncorhynchus	OECD 203	Notes
.50	9011	/100	IIIg/I			
				IIIyKISS	, ,	
350	18h	>100	ma/l	Danhnia		
.50	4011	/100	mg/1			
				magna		
250	72h	16	ma/1	Doguđakirahna		
.50	/ 211	10	IIIg/I			
					000/9-76-016	
				subcapitata		Not relevant
						for inorganic
						substances.
'E	424	0.6				Not to be
∠1 `	42u	9,0				expected
						expected
TE	1/14	10				Oncorhynchu
∠1 `	14u	-/				s mykiss
		332				S IIIyKiSS
						Negative
						regative
						No PBT
						substance,
						No vPvB
						substance
		>5000	mo/l	Escherichia		substance
		/3000	1115/1			
0	24h	>1000	mo/l			
	2 111		1115/1			
DEC/NO			mo/ko			
		/1000	mg/Kg			
				1001144		Insoluble20°
						C
	C50 C50 CF CF CO DEC/NO	C50 48h C50 72h CF 42d CF 14d CO 24h DEC/NO	C50 48h >100 C50 72h 16 CF 42d 9,6 CF 14d 19- 352 >5000 C0 24h >1000 DEC/NO >1000	C50 48h >100 mg/l C50 72h 16 mg/l CF 42d 9,6 CF 14d 19- 352 >5000 mg/l C0 24h >1000 mg/l OEC/NO >1000 mg/kg	Section Sect	March Marc

2-methoxy-1-methylethyl acetate										
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes			
12.1. Toxicity to	LC50	96h	100-	mg/l	Oncorhynchus	OECD 203				
fish:			180		mykiss	(Fish, Acute				
						Toxicity Test)				
12.1. Toxicity to	EC50	48h	>500	mg/l	Daphnia	OECD 202				
daphnia:					magna	(Daphnia sp.				
						Acute				
						Immobilisatio				
						n Test)				

Page 23 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

12.1. Toxicity to	NOEC/NO	21d	>100	mg/l	Daphnia	OECD 211	
daphnia:	EL				magna	(Daphnia	
						magna	
						Reproduction	
						Test)	
12.5. Results of							No PBT
PBT and vPvB							substance,
assessment							No vPvB
							substance
Toxicity to	EC20	30min	>1000	mg/l	activated	OECD 209	
bacteria:					sludge	(Activated	
						Sludge,	
						Respiration	
						Inhibition	
						Test (Carbon	
						and	
						Ammonium	
						Oxidation))	

1,6-hexanediyl-bis	2-(2-(1-ethyl)	pentyl)-3	-oxazolid	inyl)ethy	l)carbamate		
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to	LC50	96h	316	mg/l	Brachydanio	OECD 203	
fish:					rerio	(Fish, Acute	
						Toxicity Test)	
12.1. Toxicity to	EC50	48h	193	mg/l	Daphnia	OECD 202	
daphnia:					magna	(Daphnia sp.	
						Acute	
						Immobilisatio	
						n Test)	
12.1. Toxicity to	EC50		1770	mg/l			
algae:							
12.1. Toxicity to	IC50	72h	43	mg/l	Desmodesmus	OECD 201	
algae:					subspicatus	(Alga,	
						Growth	
						Inhibition	
						Test)	
12.2. Persistence		28d	43	%			
and degradability:							
Water solubility:							Soluble

3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate											
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes				
12.1. Toxicity to	LC50	48h	1,8	mg/l	Leuciscus idus						
fish:											
12.1. Toxicity to	EC50	48h	27	mg/l							
daphnia:											
12.1. Toxicity to	EC50	72h	118	mg/l	Scenedesmus						
algae:					subspicatus						

Page 24 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

12.2. Persistence and degradability:		28d	62	%	OECD 301 E (Ready Biodegradabil ity - Modified OECD Screening Test)	Not readily biodegradabl e
12.3. Bioaccumulative potential:	Log Pow		4,75		,	A notable biological accumulation potential has to be expected (LogPow > 3).
12.4. Mobility in soil:	Log Koc		36000			
12.4. Mobility in soil:	H (Henry)		0,000 0657	atm*m 3/mol		25°C
Toxicity to bacteria:	EC10	6h	554	mg/l		

Addition reaction	Addition reaction products of conjugated sunflower-oil fatty acids and tall-oil fatty acids with maleic									
anhydride						·				
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes			
12.2. Persistence		28d	40	%		OECD 301 F	Not readily			
and degradability:						(Ready	biodegradabl			
						Biodegradabil	e			
						ity -				
						Manometric				
						Respirometry				
						Test)				
12.3.	Log Pow		1							
Bioaccumulative										
potential:										
12.1. Toxicity to	LL50	48h	>150	mg/l	Leuciscus idus	DIN 38412				
fish:						T.15				
12.1. Toxicity to	EL50	48h	>100	mg/l	Daphnia	OECD 202				
daphnia:					magna	(Daphnia sp.				
						Acute				
						Immobilisatio				
						n Test)				
12.1. Toxicity to	EL50	72h	>100	mg/l	Pseudokirchne	OECD 201				
algae:					riella	(Alga,				
					subcapitata	Growth				
						Inhibition				
						Test)				

Page 25 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Toxicity to bacteria:	EC50	3h	>1000	mg/l	activated sludge	OECD 209 (Activated Sludge, Respiration Inhibition Test (Carbon and Ammonium Oxidation))
12.4. Mobility in soil:	Log Koc		<=3,2			OECD 121 (Estimation of the Adsorption Coefficient (Koc) on Soil and on Sewage Sludge using HPLC)

Maleic anhydride							
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to	NOEC/NO	21d	10	mg/l	Daphnia		
daphnia:	EL				magna		
12.1. Toxicity to	LC50	96h	75	mg/l	Lepomis		EPA-660/3-
fish:					macrochirus		75-009
12.1. Toxicity to	LC50	96h	75	mg/l	Oncorhynchus		EPA-660/3-
fish:					mykiss		75-009
12.1. Toxicity to	EC50	48h	42,81	mg/l	Daphnia	OECD 202	
daphnia:					magna	(Daphnia sp.	
						Acute	
						Immobilisatio	
						n Test)	
12.1. Toxicity to	EC50	72h	74,32	mg/l	Pseudokirchne	OECD 201	
algae:					riella	(Alga,	
					subcapitata	Growth	
						Inhibition	
						Test)	
12.2. Persistence		7d	98	%		OECD 301 E	Hydrolysis
and degradability:						(Ready	
						Biodegradabil	
						ity - Modified	
						OECD	
						Screening	
						Test)	
12.3.	Log Pow		-2,61				Not to be
Bioaccumulative							expected
potential:							
12.4. Mobility in	Koc		1				Not to be
soil:							expected

Page 26 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

12.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substance
Toxicity to	EC10	18h	44,6	mg/l	Pseudomonas	IUCLID	References
bacteria:					putida	Chem. Data	
						Sheet (ESIS)	

4,5-Dichloro-2-octyl-2H-isothiazol-3-one							
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.2. Persistence							Readily
and degradability:							biodegradabl
							e
12.3.	BCF		750		Lepomis		
Bioaccumulative potential:					macrochirus		
12.3.	Log Pow		2,8				
Bioaccumulative							
potential:							
12.1. Toxicity to	LC50	96h	0,007	mg/l	Oncorhynchus		
fish:			8		mykiss		
12.1. Toxicity to	EC50	48h	0,009	mg/l	Daphnia		
daphnia:			7		magna		
12.1. Toxicity to	NOEC/NO	21d	0,000	mg/l	Daphnia		
daphnia:	EL		4		magna		
12.1. Toxicity to	NOEC/NO	72h	0,015	mg/l			
algae:	EL						
12.1. Toxicity to	EC50	72h	0,025	mg/l			
algae:							
12.5. Results of							No PBT
PBT and vPvB							substance,
assessment							No vPvB
							substance

SECTION 13: Disposal considerations

13.1 Waste treatment methods

For the substance / mixture / residual amounts

The waste codes are recommendations based on the scheduled use of this product.

Owing to the user's specific conditions for use and disposal, other waste codes may be allocated under certain circumstances. (2014/955/EU)

08 04 09 waste adhesives and sealants containing organic solvents or other hazardous substances Recommendation:

Sewage disposal shall be discouraged.

Pay attention to local and national official regulations.

E.g. suitable incineration plant.

E.g. dispose at suitable refuse site.

For contaminated packing material

Pay attention to local and national official regulations.

Page 27 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Empty container completely.

Uncontaminated packaging can be recycled.

Dispose of packaging that cannot be cleaned in the same manner as the substance.

Do not perforate, cut up or weld uncleaned container.

Residues may present a risk of explosion.

SECTION 14: Transport information

General statements

14.1. UN number: 1866

Transport by road/by rail (ADR/RID)

14.2. UN proper shipping name:

UN 1866 RESIN SOLUTION
14.3. Transport hazard class(es):
3
14.4. Packing group:
III

Classification code: F1 LQ: 5 L

14.5. Environmental hazards: Not applicable

Tunnel restriction code: E

Transport by sea (IMDG-code)

14.2. UN proper shipping name:

RESIN SOLUTION

14.3. Transport hazard class(es):314.4. Packing group:IIIEmS:F-E, S-E

Marine Pollutant: n.a

14.5. Environmental hazards: Not applicable

Transport by air (IATA)

14.2. UN proper shipping name:

Resin solution

14.3. Transport hazard class(es): 3
14.4. Packing group: III

14.5. Environmental hazards: Not applicable

14.6. Special precautions for user

Persons employed in transporting dangerous goods must be trained.

All persons involved in transporting must observe safety regulations.

Precautions must be taken to prevent damage.

14.7. Transport in bulk according to Annex II of MARPOL and the IBC Code

Freighted as packaged goods rather than in bulk, therefore not applicable.

Minimum amount regulations have not been taken into account.

Danger code and packing code on request.

Comply with special provisions.

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

Observe restrictions:

Page 28 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Comply with national regulations/laws governing the protection of young people at work (national implementation of the Directive 94/33/EC)!

Regulation (EC) No 1907/2006, Annex XVII

Isophoronediisocyanate, homopolymer

3-isocyanatomethyl-3,5,5-trimethylcyclohexyl isocyanate

Comply with national regulations/laws governing maternity protection (national implementation of the Directive 92/85/EEC)!

Comply with trade association/occupational health regulations.

Directive 2012/18/EU ("Seveso III"), Annex I, Part 1 - The following categories apply to this product (others

may also need to be considered according to storage, handling etc.):

Hazard categories	Notes to Annex I	Qualifying quantity	Qualifying quantity
		(tonnes) of dangerous	(tonnes) of dangerous
		substances as referred to	substances as referred to
		in Article 3(10) for the	in Article 3(10) for the
		application of - Lower-	application of - Upper-
		tier requirements	tier requirements
P5c		5000	50000

The Notes to Annex 1 of Directive 2012/18/EU, in particular those named in the tables here and notes 1-6, must be taken into account when assigning categories and qualifying quantities.

Directive 2010/75/EU (VOC):

450 g/l

Treated goods as per Regulation (EU) No. 528/2012 must display specific information on the label.

Please note Article 58 paragraph (3) subparagraph 2 of Regulation (EU) No. 528/2012.

Approval of the biocidal active substance may mean that special conditions are required for marketing the treated goods.

These are indicated in the approval of the active substance.

Observe incident regulations.

15.2 Chemical safety assessment

A chemical safety assessment is not provided for mixtures.

SECTION 16: Other information

Revised sections:

3, 6, 9, 15

Employee training in handling dangerous goods is required.

These details refer to the product as it is delivered.

Employee instruction/training in handling hazardous materials is required.

Classification and processes used to derive the classification of the mixture in accordance with the ordinance $(EG)\ 1272/2008\ (CLP)$:

Classification in accordance with regulation (EC)	Evaluation method used
No. 1272/2008 (CLP)	
Flam. Liq. 3, H226	Classification based on test data.
Acute Tox. 4, H332	Classification based on toxicological analyses.

Page 29 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

STOT RE 2, H373	Classification according to calculation procedure.
Eye Irrit. 2, H319	Classification according to calculation procedure.
STOT SE 3, H335	Classification according to calculation procedure.
Skin Irrit. 2, H315	Classification according to calculation procedure.
Resp. Sens. 1, H334	Classification according to calculation procedure.
Skin Sens. 1, H317	Classification according to calculation procedure.
Asp. Tox. 1, H304	Classification according to calculation procedure.
Aquatic Chronic 3, H412	Classification according to calculation procedure.

The following phrases represent the posted Hazard Class and Risk Category Code (GHS/CLP) of the product and the constituents (specified in Section 2 and 3).

H330 Fatal if inhaled.

H226 Flammable liquid and vapour.

H351 Suspected of causing cancer by inhalation.

H372 Causes damage to organs through prolonged or repeated exposure by inhalation.

H317 May cause an allergic skin reaction.

H314 Causes severe skin burns and eye damage.

H302 Harmful if swallowed.

H304 May be fatal if swallowed and enters airways.

H312 Harmful in contact with skin.

H315 Causes skin irritation.

H318 Causes serious eye damage.

H319 Causes serious eye irritation.

H331 Toxic if inhaled.

H332 Harmful if inhaled.

H334 May cause allergy or asthma symptoms or breathing difficulties if inhaled.

H335 May cause respiratory irritation.

H373 May cause damage to organs through prolonged or repeated exposure.

H400 Very toxic to aquatic life.

H410 Very toxic to aquatic life with long lasting effects.

H411 Toxic to aquatic life with long lasting effects.

H412 Harmful to aquatic life with long lasting effects.

Flam. Liq. — Flammable liquid

Acute Tox. — Acute toxicity - inhalation

STOT RE — Specific target organ toxicity - repeated exposure

Eye Irrit. — Eye irritation

STOT SE — Specific target organ toxicity - single exposure - respiratory tract irritation

Skin Irrit. — Skin irritation

Resp. Sens. — Respiratory sensitization

Skin Sens. — Skin sensitization

Asp. Tox. — Aspiration hazard

Aquatic Chronic — Hazardous to the aquatic environment - chronic

Acute Tox. — Acute toxicity - dermal

Carc. — Carcinogenicity

Acute Tox. — Acute toxicity - oral

Skin Corr. — Skin corrosion

Eye Dam. — Serious eye damage

Aquatic Acute — Hazardous to the aquatic environment - acute

(GB

Page 30 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

Any abbreviations and acronyms used in this document:

acc., acc. to according, according to

ADR Accord européen relatif au transport international des marchandises Dangereuses par Route (= European

Agreement concerning the International Carriage of Dangerous Goods by Road)

AOX Adsorbable organic halogen compounds

approx. approximately Art., Art. no. Article number

ASTM ASTM International (American Society for Testing and Materials)

ATE Acute Toxicity Estimate

BAM Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Germany)

BAuA Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (= Federal Institute for Occupational Health and

Safety, Germany)

BCF Bioconcentration factor

BSEF The International Bromine Council

bw body weight

CAS Chemical Abstracts Service

CLP Classification, Labelling and Packaging (REGULATION (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures)

CMR carcinogenic, mutagenic, reproductive toxic

DMEL Derived Minimum Effect Level

DNEL Derived No Effect Level DOC Dissolved organic carbon

dw dry weight

e.g. for example (abbreviation of Latin 'exempli gratia'), for instance

EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants)

EC European Community

ECHA European Chemicals Agency

ECx, ELx (x = 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect

EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of Notified Chemical Substances

EN European Norms

EPA United States Environmental Protection Agency (United States of America)

ErCx, $E\mu Cx$, ErLx (x = 10, 50) Effect Concentration/Level of x % on inhibition of the growth rate (algae, plants)

etc. et cetera

EU European Union

EVAL Ethylene-vinyl alcohol copolymer

Fax. Fax number gen. general

GHS Globally Harmonized System of Classification and Labelling of Chemicals

GWP Global warming potential

Koc Adsorption coefficient of organic carbon in the soil

Kow octanol-water partition coefficient

IARC International Agency for Research on Cancer

IATA International Air Transport Association

IBC (Code) International Bulk Chemical (Code)

IMDG-code International Maritime Code for Dangerous Goods

Page 31 of 31

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 03.09.2021 / 0004

Replacing version dated / version: 26.05.2021 / 0003

Valid from: 03.09.2021 PDF print date: 03.09.2021 4F-Topcoat drive-on white 10 kg

Art.: 9095838

incl. including, inclusive

IUCLID International Uniform Chemical Information Database

IUPACInternational Union for Pure Applied Chemistry

LC50 Lethal Concentration to 50 % of a test population

LD50 Lethal Dose to 50% of a test population (Median Lethal Dose)

Log Koc Logarithm of adsorption coefficient of organic carbon in the soil

Log Kow, Log Pow Logarithm of octanol-water partition coefficient

LQ Limited Quantities

MARPOL International Convention for the Prevention of Marine Pollution from Ships

n.a. not applicablen.av. not availablen.c. not checkedn.d.a. no data available

n.d.a. no data avallable

NLP No-longer-Polymer

NOEC, NOEL No Observed Effect Concentration/Level

OECD Organisation for Economic Co-operation and Development

org. organic

PBT persistent, bioaccumulative and toxic

PE Polyethylene

PNEC Predicted No Effect Concentration

ppm parts per million PVC Polyvinylchloride

REACH Registration, Evaluation, Authorisation and Restriction of Chemicals (REGULATION (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals)

REACH-IT List-No. 9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS No. or other numerical identifier. List Numbers do not have any legal significance, rather they are purely technical identifiers for processing a submission via REACH-IT.

RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (= Regulation concerning the International Carriage of Dangerous Goods by Rail)

SVHC Substances of Very High Concern

Tel. Telephone

TOC Total organic carbon

UN RTDG United Nations Recommendations on the Transport of Dangerous Goods

VOC Volatile organic compounds

vPvB very persistent and very bioaccumulative

wwt weight

The statements made here should describe the product with regard to the necessary safety precautions - they are not meant to guarantee definite characteristics - but they are based on our present up-to-date knowledge. No responsibility.