

Page 1 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Motorbike Engine Flush

1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses of the substance or mixture:

No information available at present.

Additives

Uses advised against:

No information available at present.

1.3 Details of the supplier of the safety data sheet

LIQUI MOLY GmbH Jerg-Wieland-Str. 4 89081 Ulm-Lehr Tel.: (+49) 0731-1420-0

Fax: (+49) 0731-1420-88

Qualified person's e-mail address: info@chemical-check.de, k.schnurbusch@chemical-check.de Please DO NOT use for requesting Safety Data Sheets.

1.4 Emergency telephone number

Emergency information services / official advisory body:

Landspitali- The National University Hospital of Iceland, tel. +354 543 2222 or 112 (valid only for Iceland)

Telephone number of the company in case of emergencies:

+49 (0) 700 / 24 112 112 (LMR) +1 872 5888271 (LMR)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) 1272/2008 (CLP)

The mixture is not classified as dangerous in the terms of the Regulation (EC) 1272/2008 (CLP).

2.2 Label elements

Labeling according to Regulation (EC) 1272/2008 (CLP)

EUH066-Repeated exposure may cause skin dryness or cracking.

EUH208-Contains Benzenesulfonic acid, methyl-, mono-C20-24-branched alkyl derivs., calcium salts. May produce an allergic reaction. EUH210-Safety data sheet available on request.

2.3 Other hazards

The mixture does not contain any vPvB substance (vPvB = very persistent, very bioaccumulative) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

Page 2 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

The mixture does not contain any PBT substance (PBT = persistent, bioaccumulative, toxic) or is not included under XIII of the regulation (EC)

1907/2006 (< 0,1 %).

The mixture does not contain any substance with endocrine disrupting properties (< 0,1 %).

Dangerous vapours heavier than air. Product floats on the water surface.

Product can re-ignite itself.

SECTION 3: Composition/information on ingredients

3.1 Substances

n.a. **3.2 Mixtures**

Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics	
Registration number (REACH)	01-2119457273-39-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	918-481-9
CAS	
content %	50-<75
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	EUH066
	Asp. Tox. 1, H304

Distillates (petroleum), hydrotreated heavy paraffinic	
Registration number (REACH)	01-2119484627-25-XXXX
Index	649-467-00-8
EINECS, ELINCS, NLP, REACH-IT List-No.	265-157-1
CAS	64742-54-7
content %	<25
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

White mineral oil (Natural oil)	
Registration number (REACH)	01-2119487078-27-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	232-455-8
CAS	8042-47-5
content %	<25
Classification according to Regulation (FC) 1272/2008 (CLP). M-factors	Asp. Tox. 1. H304

Distillates (petroleum), hydrotreated light paraffinic	
Registration number (REACH)	01-2119487077-29-XXXX
Index	649-468-00-3
EINECS, ELINCS, NLP, REACH-IT List-No.	265-158-7
CAS	64742-55-8
content %	<25
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Distillates (petroleum), solvent-dewaxed heavy paraffinic	
Registration number (REACH)	01-2119471299-27-XXXX
Index	649-474-00-6
EINECS, ELINCS, NLP, REACH-IT List-No.	265-169-7
CAS	64742-65-0
content %	<25
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Distillates (petroleum), solvent-dewaxed light paraffinic	
Registration number (REACH)	01-2119480132-48-XXXX
Index	649-469-00-9
EINECS, ELINCS, NLP, REACH-IT List-No.	265-159-2
CAS	64742-56-9
content %	<25
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Page 3 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Benzenesulfonic acid, methyl-, mono-C20-24-branched alkyl derivs., calcium salts	
Registration number (REACH)	
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	682-816-2
CAS	722503-68-6
content %	0,1-<1
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Skin Sens. 1B, H317

Impurities, test data and additional information may have been taken into account in classifying and labelling the product.

For the text of the H-phrases and classification codes (GHS/CLP), see Section 16.

The substances named in this section are given with their actual, appropriate classification!

For substances that are listed in appendix VI, table 3.1 of the regulation (EC) no. 1272/2008 (CLP regulation) this means that all notes that may be given here for the named classification have been taken into account.

If, for example, the note P is applied for a hydrocarbon then this has already been taken into account for the classification named here. Quote: "Note P - The classification as a carcinogen or mutagen need not apply if it can be shown that the substance contains less than 0,1 % w/w benzene (EINECS No 200-753-7)."

Article 4 of the regulation (EC) no. 1272/2008 (CLP regulation) was also observed and taken into account for the classification named here. The addition of the highest concentrations listed here can result in a classification. Only when this classification is listed in Section 2 does it apply. In all other cases the total concentration is below the classification.

SECTION 4: First aid measures

4.1 Description of first aid measures

First-aiders should ensure they are protected!

Never pour anything into the mouth of an unconscious person!

Inhalation

Remove person from danger area.

Supply person with fresh air and consult doctor according to symptoms.

Skin contact

Remove polluted, soaked clothing immediately, wash thoroughly with plenty of water and soap, in case of irritation of the skin (flare), consult a doctor.

Eve contact

Remove contact lenses.

Wash thoroughly for several minutes using copious water. Seek medical help if necessary.

Inaestion

Rinse the mouth thoroughly with water.

Do not induce vomiting - give copious water to drink. Consult doctor immediately.

4.2 Most important symptoms and effects, both acute and delayed

If applicable delayed symptoms and effects can be found in section 11 and the absorption route in section 4.1.

In certain cases, the symptoms of poisoning may only appear after an extended period / after several hours.

reddening of the skin

drying of the skin.

Allergic reaction

4.3 Indication of any immediate medical attention and special treatment needed

Symptomatic treatment.

SECTION 5: Firefighting measures

5.1 Extinguishing media Suitable extinguishing media

CO₂

Extinction powder

Foam

Unsuitable extinguishing media

High volume water jet

5.2 Special hazards arising from the substance or mixture

In case of fire the following can develop:

Oxides of carbon

(B)

Page 4 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Toxic gases

5.3 Advice for firefighters

For personal protective equipment see Section 8. In case of fire and/or explosion do not breathe fumes. Protective respirator with independent air supply.

According to size of fire Full protection, if necessary. Cool container at risk with water.

Dispose of contaminated extinction water according to official regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

In case of spillage or accidental release, wear personal protective equipment as specified in section 8 to prevent contamination.

Ensure sufficient ventilation, remove sources of ignition.

Avoid dust formation with solid or powder products.

Leave the danger zone if possible, use existing emergency plans if necessary.

Remove possible causes of ignition - do not smoke.

Ensure sufficient supply of air. Avoid contact with eyes or skin. If applicable, caution - risk of slipping.

6.1.2 For emergency responders

See section 8 for suitable protective equipment and material specifications.

6.2 Environmental precautions

If leakage occurs, dam up.

Resolve leaks if this possible without risk.

Prevent from entering drainage system.

Prevent surface and ground-water infiltration, as well as ground penetration.

If accidental entry into drainage system occurs, inform responsible authorities.

6.3 Methods and material for containment and cleaning up

Soak up with absorbent material (e.g. universal binding agent, sand, diatomaceous earth) and dispose of according to Section 13. Fill the absorbed material into lockable containers.

6.4 Reference to other sections

For personal protective equipment see Section 8 and for disposal instructions see Section 13.

SECTION 7: Handling and storage

In addition to information given in this section, relevant information can also be found in section 8 and 6.1.

7.1 Precautions for safe handling

7.1.1 General recommendations

Ensure good ventilation.

Keep away from sources of ignition - Do not smoke.

Take measures against electrostatic charging, if appropriate.

Avoid contact with eyes or skin.

Eating, drinking, smoking, as well as food-storage, is prohibited in work-room.

Observe directions on label and instructions for use.

7.1.2 Notes on general hygiene measures at the workplace

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

7.2 Conditions for safe storage, including any incompatibilities

Store product closed and only in original packing.

Not to be stored in gangways or stair wells.

Under all circumstances prevent penetration into the soil.

Store in a well ventilated place.

Store in a dry place.

7.3 Specific end use(s)

GB)

Page 5 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

No information available at present.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Workplace exposure limit (WEL) of the total hydrocarbon solvent content of the mixture (RCP method according to EH40): 800 mg/m3

© Chemical Name	Hydrocarbons, C	C10-C13, n-alkanes, isoalkanes, cycli	cs, <2% aromatics	
WEL-TWA: 800 mg/m3		WEL-STEL:		
Monitoring procedures:	=	Draeger - Hydrocarbons 0,1%/c (8°		
	-	Draeger - Hydrocarbons 2/a (81 03	581)	
	-	Compur - KITA-187 S (551 174)		
BMGV:			Other information: (C paragraphs 84-87, EH	DEL acc. to RCP-method, 40)
Chemical Name	Oil mist, mineral			
WEL-TWA: 5 mg/m3 (Mineral oil,	excluding metal	WEL-STEL:		
working fluids, ACGIH)				
Monitoring procedures:	-	Draeger - Oil Mist 1/a (67 33 031)		
BMGV:			Other information:	-

Distillates (petroleum), hydrotreated heavy paraffinic						
Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note
	Environmental					
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	

White mineral oil (Natural	oil)					
Area of application	Exposure route / Environmental compartment	Effect on health	Descriptor	Value	Unit	Note
Consumer	Human - dermal	Long term, systemic effects	DNEL	92	mg/kg bw/day	
Consumer	Human - inhalation	Long term, systemic effects	DNEL	35	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	25	mg/kg bw/day	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	217,5	mg/kg bw/day	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	164,56	mg/m3	

Distillates (petroleum), hydrotreated light paraffinic						
Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note
	Environmental					
	compartment					
	Environment - oral (animal		PNEC	9,33	mg/kg feed	
	feed)					
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	

Page 6 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/day
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg bw/dav
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3

Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note
	Environmental		-			
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/d	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg bw/d	

Distillates (petroleum), so	olvent-dewaxed light paraffinic				_	
Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note
	Environmental					
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic	DNEL	0,74	mg/kg	
		effects			bw/day	
Workers / employees	Human - inhalation	Long term, systemic	DNEL	2,73	mg/m3	
		effects				
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - dermal	Long term, systemic	DNEL	0,97	mg/kg	
		effects			bw/day	

- United Kingdom | WEL-TWA = Workplace Exposure Limit Long-term exposure limit 8-hour TWA (= time weighted average) reference
 period (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).
- (EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU:
- (8) = Inhalable fraction (2004/37/CE, 2017/164/EU). (9) = Respirable fraction (2004/37/CE, 2017/164/EU). (11) = Inhalable fraction (2004/37/CE). (12) = Inhalable fraction. Respirable fraction in those Member States that implement, on the date of the entry into force of this Directive, a biomonitoring system with a biological limit value not exceeding 0,002 mg Cd/g creatinine in urine (2004/37/CE).
- | WEL-STEL = Workplace Exposure Limit Short-term exposure limit 15-minute reference period (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).
- (EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU:
- (8) = Inhalable fraction (2004/37/EC, 2017/164/EU). (9) = Respirable fraction (2004/37/EC, 2017/164/EU). (10) = Short-term exposure limit value in relation to a reference period of 1 minute (2017/164/EU). |
- | BMGV = Biological monitoring guidance value (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).
- (EU) = Directive 98/24/EC or 2004/37/EC or SCOEL (Biological Limit Value BLV, Recommendation from the Scientific Committee on Occupational Exposure Limits (SCOEL)) |
- | Other information (EH40/2005 Workplace exposure limits (Fourth Edition 2020)): Sen = Capable of causing occupational asthma. Sk = Can be absorbed through skin. Carc = Capable of causing cancer and/or heritable genetic damage.
- (EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU:
- (13) = The substance can cause sensitisation of the skin and of the respiratory tract (2004/37/CE), (14) = The substance can cause sensitisation of the skin (2004/37/CE).

8.2 Exposure controls

8.2.1 Appropriate engineering controls

Ensure good ventilation. This can be achieved by local suction or general air extraction.

Page 7 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

If this is insufficient to maintain the concentration under the WEL or AGW values, suitable breathing protection should be worn.

Applies only if maximum permissible exposure values are listed here.

Suitable assessment methods for reviewing the effectiveness of protection measures adopted include metrological and non-metrological investigative techniques.

These are specified by e.g. EN 14042.

EN 14042 "Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents".

8.2.2 Individual protection measures, such as personal protective equipment

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Eye/face protection:

Tight fitting protective goggles with side protection (EN 166).

Skin protection - Hand protection:

Solvent resistant protective gloves (EN ISO 374).

If applicable

Protective nitrile gloves (EN ISO 374).

Minimum layer thickness in mm:

0,4

Permeation time (penetration time) in minutes:

> 480

Protective hand cream recommended.

The breakthrough times determined in accordance with EN 16523-1 were not obtained under practical conditions.

The recommended maximum wearing time is 50% of breakthrough time.

Skin protection - Other:

Protective working garments (e.g. safety shoes EN ISO 20345, long-sleeved protective working garments).

Respiratory protection:

If OES or MEL is exceeded.

Filter A P2 (EN 14387), code colour brown, white

Observe wearing time limitations for respiratory protection equipment.

Thermal hazards:

Not applicable

Additional information on hand protection - No tests have been performed.

In the case of mixtures, the selection has been made according to the knowledge available and the information about the contents.

Selection of materials derived from glove manufacturer's indications.

Final selection of glove material must be made taking the breakthrough times, permeation rates and degradation into account. Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to

Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to manufacturer.

In the case of mixtures, the resistance of glove materials cannot be predicted and must therefore be tested before use.

The exact breakthrough time of the glove material can be requested from the protective glove manufacturer and must be observed.

8.2.3 Environmental exposure controls

No information available at present.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state: Liquid Colour: Liquid Yellow

Odour: Characteristic
Melting point/freezing point: There is no information availa

Melting point/freezing point:

There is no information available on this parameter.

Boiling point or initial boiling point and boiling range:

There is no information available on this parameter.

Flammability: Flammable

Lower explosion limit:

Upper explosion limit:

There is no information available on this parameter.

There is no information available on this parameter.

Page 8 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Flash point:

Auto-ignition temperature:

Decomposition temperature:

pH:

Kinematic viscosity:

Solubility:

Partition coefficient n-octanol/water (log value):

Vapour pressure:

Density and/or relative density: Relative vapour density:

Particle characteristics:

9.2 Other information

Explosives:

Oxidising liquids:

Product is not explosive. When using: development of explosive

vapour/air mixture possible.

Does not apply to liquids.

Does not apply to mixtures.

Mixture is non-soluble (in water).

22,59 mm2/s (40°C)

0,815 g/cm3 (20°C)

There is no information available on this parameter.

61 °C

Insoluble

SECTION 10: Stability and reactivity

10.1 Reactivity

The product has not been tested.

10.2 Chemical stability

Stable with proper storage and handling.

10.3 Possibility of hazardous reactions

No dangerous reactions are known.

10.4 Conditions to avoid

See also section 7.

Heating, open flame, ignition sources

10.5 Incompatible materials

See also section 7.

Avoid contact with strong oxidizing agents.

10.6 Hazardous decomposition products

See also section 5.2

No decomposition when used as directed.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Possibly more information on health effects, see Section 2.1 (classification).

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	•					n.d.a.
Acute toxicity, by dermal route:						n.d.a.
Acute toxicity, by inhalation:						n.d.a.
Skin corrosion/irritation:						Repeated
						exposure may
						cause skin
						dryness or
						cracking.
Serious eye damage/irritation:						n.d.a.
Respiratory or skin sensitisation:						n.d.a.
Germ cell mutagenicity:						n.d.a.
Carcinogenicity:						n.d.a.
Reproductive toxicity:						n.d.a.
Specific target organ toxicity -						n.d.a.
single exposure (STOT-SE):						
Specific target organ toxicity -						n.d.a.
repeated exposure (STOT-RE):						
Aspiration hazard:						n.d.a.
Symptoms:						n.d.a.

Page 9 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Hydrocarbons, C10-C13, n-alka Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	NOIES
Acute toxicity, by drai route.	LDSU	>5000	ilig/kg	Nai	Toxicity)	
Acute toxicity, by dermal route:	LD50	>3160	ma/lea	Rabbit	OECD 402 (Acute	
Acute toxicity, by dermai route:	LD50	>3160	mg/kg	Rabbit		
A	1.050	1051		D-4	Dermal Toxicity)	1/
Acute toxicity, by inhalation:	LC50	>4951	mg/m3	Rat	OECD 403 (Acute	Vapours
					Inhalation Toxicity)	
Skin corrosion/irritation:					OECD 404 (Acute	Not irritant,
					Dermal	Analogous
					Irritation/Corrosion)	conclusion
Serious eye damage/irritation:					OECD 405 (Acute Eye	Not irritant,
					Irritation/Corrosion)	Analogous
						conclusion
Respiratory or skin					OECD 406 (Skin	Not sensitizising
sensitisation:					Sensitisation)	Analogous
					,	conclusion
Germ cell mutagenicity:					OECD 473 (In Vitro	Negative,
Cerm cen matagemeny.					Mammalian	Analogous
					Chromosome	conclusion
					Aberration Test)	CONCIUSION
Germ cell mutagenicity:					OECD 474 (Mammalian	Negative,
Germ cen mutagemony.						
					Erythrocyte	Analogous
<u> </u>					Micronucleus Test)	conclusion
Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative
				typhimurium	Reverse Mutation Test)	
Carcinogenicity:					OECD 453 (Combined	Negative,
					Chronic	Analogous
					Toxicity/Carcinogenicity	conclusion
					Studies)	
Reproductive toxicity:					OECD 414 (Prenatal	Negative,
					Developmental Toxicity	Analogous
					Study)	conclusion
Specific target organ toxicity -					OECD 408 (Repeated	Negative,
repeated exposure (STOT-RE):					Dose 90-Day Oral	Analogous
					Toxicity Study in	conclusion
					Rodents)	
Aspiration hazard:					- todomoj	Yes
Symptoms:						unconsciousnes
Cymptoms.						, headaches,
						dizziness,
						· ·
	1					mucous
	1					membrane
						irritation

Distillates (petroleum), hydrotreated heavy paraffinic							
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes	
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 420 (Acute Oral	Analogous	
					toxicity - Fixe Dose	conclusion	
					Procedure)		
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	Analogous	
					Dermal Toxicity)	conclusion	
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol,	
					Inhalation Toxicity)	Analogous	
						conclusion	
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant,	
					Dermal	Analogous	
					Irritation/Corrosion)	conclusion	
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant,	
					Irritation/Corrosion)	Analogous	
						conclusion	

Page 10 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	No (skin contact), Analogous conclusion
Germ cell mutagenicity:				Salmonella typhimurium	OECD 471 (Bacterial Reverse Mutation Test)	Negative, Analogous conclusion
Germ cell mutagenicity:					OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	Negative, Analogous conclusion Chinese hamster
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro Mammalian Cell Gene Mutation Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian Erythrocyte Micronucleus Test)	Negative, Analogous conclusion
Carcinogenicity:				Mouse	OECD 451 (Carcinogenicity Studies)	Negative, Analogous conclusion 78 weeks, dermal
Reproductive toxicity:				Rat	OECD 421 (Reproduction/Developm ental Toxicity Screening Test)	Negative, Analogous conclusion oral
Reproductive toxicity (Developmental toxicity):				Rat	OECD 414 (Prenatal Developmental Toxicity Study)	Negative, Analogous conclusion dermal
Specific target organ toxicity - repeated exposure (STOT-RE), oral:	LOAEL	125	mg/kg	Rat	OECD 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	1000	mg/kg	Rabbit	OECD 410 (Repeated Dose Dermal Toxicity - 90-Day)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), inhalat.:	NOAEL	0,22	mg/l	Rat		Dust, Mist, Analogous conclusion 4 weeks
Aspiration hazard:						Asp. Tox. 1
Symptoms:						gastrointestinal disturbances, diarrhoea

White mineral oil (Natural oil)						
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	
					Toxicity)	
Acute toxicity, by dermal route:	LD50	>2000	mg/kg	Rabbit	OECD 402 (Acute	
					Dermal Toxicity)	
Acute toxicity, by inhalation:	LC50	>5	mg/l/4h	Rat	OECD 403 (Acute	Aerosol
					Inhalation Toxicity)	
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant
					Dermal	
					Irritation/Corrosion)	
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant
					Irritation/Corrosion)	
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin contact)
sensitisation:					Sensitisation)	
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative
					Mammalian Cell Gene	
					Mutation Test)	

(B)

Page 11 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative
				typhimurium	Reverse Mutation Test)	
Carcinogenicity:						Negative
Reproductive toxicity	NOAEL	>5000	mg/kg	Rat	OECD 414 (Prenatal	Negative
(Developmental toxicity):			bw/d		Developmental Toxicity	
					Study)	
Aspiration hazard:						Yes
Symptoms:						nausea, vomiting

eated light pa	Value	Unit	Organism	Test method	Notes
					Analogous
LD30	/3000	ilig/kg	Ital		conclusion
LD50	>5000	ma/ka	Pabbit		Analogous
LD30	>3000	ilig/kg	ιταυυπ		conclusion
LCEO	. F F2	ma/I/4h	Dot	OFCD 403 (Agusto	Aerosol,
LC50	>5,53	mg/i/4n	Rat		,
				innalation (oxicity)	Analogous
			D-b-b-it	OFOD 404 (A	conclusion
			Rabbit		Not irritant,
					Analogous
					conclusion
			Rabbit		Not irritant,
				Irritation/Corrosion)	Analogous
					conclusion
			Guinea pig	OECD 406 (Skin	No (skin
				Sensitisation)	contact),
					Analogous
					conclusion
			Salmonella	OECD 471 (Bacterial	Negative,
			typhimurium		Analogous
			''	,	conclusion
			Mammalian	OECD 473 (In Vitro	Negative,
					Analogous
					conclusionChine
					e hamster
			Mouse		Negative,
			Wiouse		Analogous
				(Carcinogenicity Studies)	conclusionderma
NOVEL	1000	ma/ka	Pot	OECD 421	Analogous
NOALL	1000		Nat		conclusionderma
		DW/U			CONCIUSIONAETIN
			Det		Nagativa
			Rat		Negative,
					Analogous
NOAEL	405	//	-		conclusion
NOAEL	125		Rat		Analogous
		bw/d			conclusion
NOAEL	<30		Rat		Analogous
		bw/d			conclusion
				Study)	
NOAEL	1000	mg/kg	Rabbit		Analogous
				Dose Dermal Toxicity -	conclusion
				90-Day)	
NOAEL	0,05	mg/l	Rat	OECD 412 (Subacute	Aerosol,
					Analogous
					conclusion
NOAFI	0.15	ma/l	Rat	,,	Aerosol,
	3,.5	9,1			Analogous
					conclusion13
					weeks
					WAAKC
	LD50 LD50 LC50 NOAEL NOAEL	NOAEL 1000 NOAE	LD50 >5000 mg/kg LD50 >5000 mg/kg LC50 >5,53 mg/l/4h NOAEL 1000 mg/kg bw/d NOAEL 125 mg/kg bw/d NOAEL <30	LD50 >5000 mg/kg Rat LD50 >5000 mg/kg Rabbit LC50 >5,53 mg/l/4h Rat Rabbit Rabbit Rabbit Guinea pig Salmonella typhimurium Mammalian Mouse NOAEL 1000 mg/kg bw/d Rat NOAEL 125 mg/kg bw/d Rat NOAEL <30	LD50

(B)

Page 12 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004 Valid from: 15.08.2024 PDF print date: 21.08.2024

Motorbike Engine Flush

Toxicity / effect	Endpoint	vy paraffinic Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	NOIGS
Acute toxicity, by drai route.	LD30	>3000	ilig/kg	Nat	Toxicity)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	
Acute toxicity, by definal route.	LD30	>5000	ilig/kg	Rabbit	Dermal Toxicity)	
Acute toxicity, by inhalation:	LD50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol
Acute toxicity, by illinatation.	LD30	>5,55	1119/1/411	Nat	Inhalation Toxicity)	Aerosor
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant,
Skiii coirosion/irritation.				Nabbit	Dermal	Analogous
					Irritation/Corrosion)	conclusion
Cariava ava damaga/irritation				Rabbit		Not irritant.
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	
					Irritation/Corrosion)	Analogous
B					0505 400 (01)	conclusion
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin
sensitisation:					Sensitisation)	contact),
						Analogous
						conclusion
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian	Negative,
					Erythrocyte	Analogous
					Micronucleus Test)	conclusion
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro	Negative,
					Mammalian	Analogous
					Chromosome	conclusion
					Aberration Test)	Chinese hamste
Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative,
				typhimurium	Reverse Mutation Test)	Analogous
						conclusion
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative,
					Mammalian Cell Gene	Analogous
					Mutation Test)	conclusion
Carcinogenicity:				Mouse		Female, Negativ
Carcinogenicity:				Mouse	OECD 451	Negative,
					(Carcinogenicity Studies)	Analogous
					, , ,	conclusion 78
						weeks, dermal
Reproductive toxicity:				Rat		Negative
Reproductive toxicity				Rat	OECD 414 (Prenatal	Negative,
(Developmental toxicity):					Developmental Toxicity	Analogous
(= - : - : - - : : : : : : : : : : : : :					Study)	conclusion
					,	dermal
Reproductive toxicity (Effects				Rat	OECD 421	Negative,
on fertility):				1.00	(Reproduction/Developm	Analogous
511 151 timey).					ental Toxicity Screening	conclusion oral,
					Test)	dermal
Specific target organ toxicity -	NOAEL	30	mg/kg/d	Rat	OECD 411 (Subchronic	Analogous
repeated exposure (STOT-RE),	NOALL	30	mg/kg/d	Ital	Dermal Toxicity - 90-day	conclusion
dermal:					Study)	CONCIUSION
Specific target organ toxicity -	NOAEL	~1000	mg/kg	Rabbit	OECD 410 (Repeated	Analogous
repeated exposure (STOT-RE),	NOALL	~1000	bw/d	Nabbit	Dose Dermal Toxicity -	conclusion
dermal:			DW/U		90-Day)	COLICIUSION
Specific target organ toxicity -	NOAEL	0,22	mg/l	Rat	au-Day)	Aerosol,
	NOAEL	0,22	mg/i	rai		
repeated exposure (STOT-RE),						Analogous
inhalat.:						conclusion 4
On a siff a town at a second sign of the	NOAT	0.45	n	D-4		weeks
Specific target organ toxicity -	NOAEL	0,15	mg/l	Rat		Aerosol,
repeated exposure (STOT-RE),						Analogous
inhalat.:						conclusion 13
						weeks
Aspiration hazard:						Yes

Page 13 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Symptoms:			mucous
			membrane
			irritation,
			dizziness,
			nausea

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	
					Toxicity)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	
					Dermal Toxicity)	
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol
					Inhalation Toxicity)	
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant
					Dermal	
					Irritation/Corrosion)	
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant
					Irritation/Corrosion)	
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin contact)
sensitisation:					Sensitisation)	
Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative
				typhimurium	Reverse Mutation Test)	
Germ cell mutagenicity:				Mammalian	OECD 474 (Mammalian	Negative
					Erythrocyte	
					Micronucleus Test)	
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro	Negative,
					Mammalian	Analogous
					Chromosome	conclusion
					Aberration Test)	Chinese hamster
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative
					Mammalian Cell Gene	
					Mutation Test)	
Reproductive toxicity:	NOAEL	>1000	mg/kg	Rat	OECD 421	Negative
			bw/d		(Reproduction/Developm	
					ental Toxicity Screening	
					Test)	
Reproductive toxicity:	NOAEL	>2000	mg/kg	Rat	OECD 414 (Prenatal	
			bw/d		Developmental Toxicity	
					Study)	
Aspiration hazard:						Yes
Symptoms:						drying of the
						skin., vomiting,
		<u> </u>				nausea

Benzenesulfonic acid, methyl-, mono-C20-24-branched alkyl derivs., calcium salts										
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes				
Acute toxicity, by inhalation:	LC50	5,1	mg/l/4h	Rat		Aerosol				
Acute toxicity, by inhalation:	LC50	20,1	mg/l/4h	Rat		Vapours				
Respiratory or skin						Yes (skin				
sensitisation:						contact),				
						Analogous				
						conclusion				

11.2. Information on other hazards

Motorbike Engine Flush						
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Endocrine disrupting properties:						Does not apply
						to mixtures.

Page 14 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

relevant informati available	
available	
	on
	on
l adverse	effects
on healtl	

Hydrocarbons, C10-C13, n-alkanes, isoalkanes, cyclics, <2% aromatics											
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes					
Other information:						Repeated					
						exposure may					
						cause skin					
						dryness or					
						cracking.					

SECTION 12: Ecological information

Possibly more information on environmental effects, see Section 2.1 (classification).

Motorbike Engine Flush

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:							n.d.a.
12.1. Toxicity to daphnia:							n.d.a.
12.1. Toxicity to algae:							n.d.a.
12.2. Persistence and							n.d.a.
degradability:							
12.3. Bioaccumulative							n.d.a.
potential:							
12.4. Mobility in soil:							n.d.a.
12.5. Results of PBT							n.d.a.
and vPvB assessment							
12.6. Endocrine							Does not apply
disrupting properties:							to mixtures.
12.7. Other adverse							No information
effects:							available on
							other adverse
							effects on the
							environment.
Other information:							According to the
							recipe, contains
							no AOX.
Other information:							DOC-elimination
							degree(complex
							ng organic
							substance)>=
							80%/28d: No

Hydrocarbons, C10-C13,	n-alkanes, isoa	alkanes, cy	clics, <2% a	romatics			
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	NOELR	28d	0,101	mg/l	Oncorhynchus mykiss		
12.1. Toxicity to fish:	LL50	96h	>1000	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxicity to daphnia:	EL50	48h	>1000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	
12.1. Toxicity to daphnia:	NOELR	21d	0,176	mg/l	Daphnia magna	,	
12.1. Toxicity to algae:	EL50	72h	>1000	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	

Page 15 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

12.2. Persistence and degradability:		28d	80	%	activated sludge	OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Readily biodegradable
12.3. Bioaccumulative potential:	BCF		10-2500				High
12.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substance
Other organisms:	EL50	48h	>1000	mg/l	Tetrahymen pyriformis		
Water solubility:							Product floats on the water surface.

Distillates (petroleum), h	ydrotreated hea	vy paraffi	nic				
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Oncorhynchus	OECD 203 (Fish,	Analogous
					mykiss	Acute Toxicity	conclusion
						Test)	
12.1. Toxicity to fish:	NOEC/NOEL	28d	>1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	QSAR	Analogous
							conclusion
12.1. Toxicity to daphnia:	EC50	48h	>1000	mg/l	Daphnia magna	OECD 202	Analogous
						(Daphnia sp.	conclusion
						Acute	
						Immobilisation	
40.4 T : '' / I	F050	401	400	/1	5 11:1 : 11	Test)	
12.1. Toxicity to algae:	EC50	48h	>100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	
					a subcapitata	Growth Inhibition Test)	
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	Analogous
12.1. TOXICITY to algae.	INOLO/NOLL	1211	>=100	ilig/i	a subcapitata	Growth Inhibition	conclusion
					a Subcapitata	Test)	CONCIUSION
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Not readily
degradability:				1		(Ready	biodegradable,
3						Biodegradability -	Analogous
						Manometric	conclusion
						Respirometry Test)	
12.2. Persistence and		28d	6	%		OECD 301 B	Not readily
degradability:						(Ready	biodegradable
						Biodegradability -	
						Co2 Evolution	
100 8:						Test)	10.1
12.3. Bioaccumulative potential:	Log Pow		3,9-6				High
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
							vPvB substance
Other information:	AOX		0	%			

White mineral oil (Natural oil)										
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes			
12.1. Toxicity to fish:	LC50	96h	>10000	mg/l	Lepomis macrochirus					
12.1. Toxicity to fish:	NOEC/NOEL	96h	>=100	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)				

Page 16 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

12.1. Toxicity to daphnia:	NOEC/NOEL	48h	>=100	mg/l	Daphnia magna	OECD 202	
						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to daphnia:	EC50	48h	>100	mg/l	Daphnia magna	,	
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	
, ,					a subcapitata	Growth Inhibition	
					'	Test)	
12.2. Persistence and		28d	24	%		OECD 301 B	Not readily
degradability:						(Ready	biodegradable
						Biodegradability -	
						Co2 Evolution	
						Test)	
12.4. Mobility in soil:							Product floats on
							the water
							surface.
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
							vPvB substance

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	NOEC/NOEL	28d	>1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Pimephales promelas	OECD 203 (Fish, Acute Toxicity Test)	Analogous conclusion
12.1. Toxicity to fish:	NOEC/NOEL	14d	1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproduction Test)	Analogous conclusion
2.1. Toxicity to daphnia:	EL50	48h	> 10000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	Analogous conclusion
2.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.1. Toxicity to algae:	EC50	72h	>100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.2. Persistence and degradability:		28d	31	%	activated sludge	OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Not readily biodegradable Analogous conclusion
12.3. Bioaccumulative potential:	Log Pow		>6				@20°C
2.3. Bioaccumulative potential:							Not to be expected
I2.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substan
Other information:							The product of be extensively eliminated from water via abion processes (e.g. adsorption on activated sludge

Page 17 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004 Valid from: 15.08.2024 PDF print date: 21.08.2024

Motorbike Engine Flush

Distillates (petroleum), s	olvent-dewaxed	heavy pa	raffinic				
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	>1000	mg/l	Salmo gairdneri		
12.1. Toxicity to fish:	LC50	96h	>5000	mg/l	Oncorhynchus	OECD 203 (Fish,	
					mykiss	Acute Toxicity	
						Test)	
12.1. Toxicity to fish:	NOEC/NOEL	21d	1000	mg/l	Oncorhynchus	QSAR	
40.4 Tanialtana fiala	1.050	001-	400		mykiss	OFOD 000 (Figh	A I
12.1. Toxicity to fish:	LC50	96h	>100	mg/l	Pimephales	OECD 203 (Fish,	Analogous conclusion
					promelas	Acute Toxicity Test)	conclusion
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211	Analogous
12.1. Toxicity to daprillia.	NOEC/NOEL	210	10	mg/i	Daprillia Illaglia	(Daphnia magna	conclusion
						Reproduction Test)	CONCIUSION
12.1. Toxicity to daphnia:	EC50	48h	>1000	mg/l	Daphnia magna	OECD 202	Analogous
12.11. Toxiony to daprima.	2000	4011	71000	liig/i	Baprilla magna	(Daphnia sp.	conclusion
						Acute	001101001011
						Immobilisation	
						Test)	
12.1. Toxicity to algae:	EC50	96h	>1000	mg/l	Scenedesmus	,	
, ,					subspicatus		
12.2. Persistence and		28d	6	%		OECD 301 B	Analogous
degradability:						(Ready	conclusion
						Biodegradability -	
						Co2 Evolution	
						Test)	
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Not readily
degradability:						(Ready	biodegradable
						Biodegradability -	(Analogous
						Manometric	conclusion)
12.3. Bioaccumulative	Las Daw		>3			Respirometry Test)	Law
potential:	Log Pow		>3				Low
12.5. Results of PBT							No PBT
and vPvB assessment							substance. No
and vi vb assessment							vPvB substance
Toxicity to bacteria:	EC20	6h	>1000	mg/l	Pseudomonas		12 000000100
,					fluorescens		

Distillates (petroleum), solvent-dewaxed light paraffinic							
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Pimephales	OECD 203 (Fish,	
					promelas	Acute Toxicity	
						Test)	
12.1. Toxicity to daphnia:	EL50	48h	>10000	mg/l	Daphnia magna	OECD 202	
						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to daphnia:	LL50	48h	>1000	mg/l	Gammarus sp.	OECD 202	
						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211	
						(Daphnia magna	
						Reproduction Test)	
12.1. Toxicity to algae:	NOEC/NOEL	72h	>100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	
					a subcapitata	Growth Inhibition	
						Test)	

Page 18 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

12.2. Persistence and degradability:		28d	31	%	activated sludge	OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Inherent
12.3. Bioaccumulative potential:	Log Pow		>3				Low
12.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substance

Benzenesulfonic acid, methyl-, mono-C20-24-branched alkyl derivs., calcium salts							
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.2. Persistence and							Not readily
degradability:							biodegradable

SECTION 13: Disposal considerations

13.1 Waste treatment methods

For the substance / mixture / residual amounts

Soaked polluted cloths, paper or other organic materials represent a fire hazard and should be controlled, collected and disposed of.

The waste codes are recommendations based on the scheduled use of this product.

Owing to the user's specific conditions for use and disposal, other waste codes may be

allocated under certain circumstances. (2014/955/EU)

13 07 03 other fuels (including mixtures)

Recommendation:

Sewage disposal shall be discouraged.

Pay attention to local and national official regulations.

Implement substance recycling.

E.g. suitable incineration plant.

For contaminated packing material

Pay attention to local and national official regulations.

Empty container completely.

Uncontaminated packaging can be recycled.

Dispose of packaging that cannot be cleaned in the same manner as the substance.

SECTION 14: Transport information

General statements

Transport by road/by rail (ADR/RID)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name: Not applicable

14.3. Transport hazard class(es): Not applicable Not applicable 14.4. Packing group: 14.5. Environmental hazards: Not applicable Not applicable Tunnel restriction code: Not applicable Classification code: Not applicable LQ: Not applicable Transport category:

Transport by sea (IMDG-code)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name:

Not applicable

14.3. Transport hazard class(es): Not applicable 14.4. Packing group: Not applicable Not applicable 14.5. Environmental hazards: Marine Pollutant: Not applicable FmS: Not applicable

(B)

Page 19 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Transport by air (IATA)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name:

Not applicable

14.3. Transport hazard class(es):Not applicable14.4. Packing group:Not applicable14.5. Environmental hazards:Not applicable

14.6. Special precautions for user

Unless specified otherwise, general measures for safe transport must be followed.

14.7. Maritime transport in bulk according to IMO instruments

Non-dangerous material according to Transport Regulations.

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

72.55 %

Observe restrictions:

General hygiene measures for the handling of chemicals are applicable.

Directive 2010/75/EU (VOC):

REGULATION (EC) No 648/2004

30 % and more aliphatic hydrocarbons less than 5 % aromatic hydrocarbons

National requirements/regulations on safety and health protection must be applied when using work equipment.

15.2 Chemical safety assessment

A chemical safety assessment is not provided for mixtures.

SECTION 16: Other information

Revised sections: 2, 3, 8, 11, 12, 15

Classification and processes used to derive the classification of the mixture in accordance with the ordinance (EG) 1272/2008 (CLP):

Not applicable

The following phrases represent the posted Hazard Class and Risk Category Code (GHS/CLP) of the product and the constituents.

H317 May cause an allergic skin reaction.

H304 May be fatal if swallowed and enters airways.

EUH066 Repeated exposure may cause skin dryness or cracking.

Asp. Tox. — Aspiration hazard Skin Sens. — Skin sensitization

Key literature references and sources for data:

Regulation (EC) No 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP) as amended.

Guidelines for the preparation of safety data sheets as amended (ECHA).

Guidelines on labelling and packaging according to the Regulation (EG) Nr. 1272/2008 (CLP) as amended (ECHA).

Safety data sheets for the constituent substances.

ECHA Homepage - Information about chemicals.

GESTIS Substance Database (Germany).

German Environment Agency "Rigoletto" information site on substances that are hazardous to water (Germany).

EU Occupation Exposure Limits Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU, (EU) 2017/164, (EU) 2019/1831, each as amended.

National Lists of Occupational Exposure Limits for each country as amended.

Regulations on the transport of hazardous goods by road, rail, sea and air (ADR, RID, IMDG, IATA) as amended.

Page 20 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

Any abbreviations and acronyms used in this document:

acc., acc. to according, according to

ADR Accord européen relatif au transport international des marchandises Dangereuses par Route (= European Agreement concerning the

International Carriage of Dangerous Goods by Road)

AOX Adsorbable organic halogen compounds

approx. approximately

Art., Art. no. Article number

ASTM ASTM International (American Society for Testing and Materials)

ATE Acute Toxicity Estimate

BAM Bundesanstalt für Materialforschung und -prüfung (= Federal Institute for Materials Research and Testing, Germany)

BAuA Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (= Federal Institute for Occupational Health and Safety, Germany)

BCF Bioconcentration factor

BSEF The International Bromine Council

CAS Chemical Abstracts Service

CLP Classification, Labelling and Packaging (REGULATION (EC) No 1272/2008 on classification, labelling and packaging of substances

and mixtures)

CMR carcinogenic, mutagenic, reproductive toxic

DMEL Derived Minimum Effect Level

DNEL Derived No Effect Level DOC Dissolved organic carbon

e.g. for example (abbreviation of Latin 'exempli gratia'), for instance

EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants)

EC European Community

ECHA European Chemicals Agency

ECx, ELx (x = 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect

EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of Notified Chemical Substances

EN European Norms

EPA United States Environmental Protection Agency (United States of America)

ErCx, EµCx, ErLx (x = 10, 50) Effect Concentration/Level of x % on inhibition of the growth rate (algae, plants)

etc. et cetera

EU European Union

EVAL Ethylene-vinyl alcohol copolymer

Fax. Fax number gen. general

GHS Globally Harmonized System of Classification and Labelling of Chemicals

GWP Global warming potential

Koc Adsorption coefficient of organic carbon in the soil

Kow octanol-water partition coefficient

IARC International Agency for Research on Cancer IATA International Air Transport Association IBC (Code) International Bulk Chemical (Code)

IMDG-code International Maritime Code for Dangerous Goods

incl. including, inclusive

IUCLID International Uniform Chemical Information Database IUPAC International Union for Pure Applied Chemistry LC50 Lethal Concentration to 50 % of a test population

LD50 Lethal Dose to 50% of a test population (Median Lethal Dose)

Log Koc Logarithm of adsorption coefficient of organic carbon in the soil Log Kow, Log Pow Logarithm of octanol-water partition coefficient

LQ Limited Quantities

MARPOL International Convention for the Prevention of Marine Pollution from Ships

mg/kg bw mg/kg body weight

mg/kg bw/d, mg/kg bw/day mg/kg body weight/day

mg/kg dw mg/kg dry weight mg/kg wwt mg/kg wet weight

n.a. not applicable n.av. not available n.c. not checked n.d.a. no data available

Page 21 of 21

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 15.08.2024 / 0005

Replacing version dated / version: 01.11.2021 / 0004

Valid from: 15.08.2024 PDF print date: 21.08.2024 Motorbike Engine Flush

NIOSH National Institute for Occupational Safety and Health (USA)

NLP No-longer-Polymer

NOEC, NOEL No Observed Effect Concentration/Level

OECD Organisation for Economic Co-operation and Development

org. organic

OSHA Occupational Safety and Health Administration (USA)

PBT persistent, bioaccumulative and toxic

PE Polyethylene

PNEC Predicted No Effect Concentration

ppm parts per million PVC Polyvinylchloride

REACHRegistration, Evaluation, Authorisation and Restriction of Chemicals (REGULATION (EC) No 1907/2006 concerning the Registration,

Evaluation, Authorisation and Restriction of Chemicals)

REACH-IT List-No. 6/7/8/9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS No. or other numerical

identifier. List Numbers do not have any legal significance, rather they are purely technical identifiers for processing a submission via REACH-

IT.

RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (= Regulation concerning the International Carriage of Dangerous Goods by Rail)

SVHC Substances of Very High Concern

Tel. Telephone

TOC Total organic carbon

UN RTDG United Nations Recommendations on the Transport of Dangerous Goods

VOC Volatile organic compounds

vPvB very persistent and very bioaccumulative

The statements made here should describe the product with regard to the necessary safety precautions - they are not meant to guarantee definite characteristics - but they are based on our present up-to-date knowledge. No responsibility.

These statements were made by:

Chemical Check GmbH, Chemical Check Platz 1-7, D-32839 Steinheim, Tel.: +49 5233 94 17 0, Fax: +49 5233 94 17 90

© by Chemical Check GmbH Gefahrstoffberatung. The copying or changing of this document is forbidden except with consent of the Chemical Check GmbH Gefahrstoffberatung.