

Page 1 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Optimal Synth 5W-30

1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses of the substance or mixture:

Grease

Uses advised against:

No information available at present.

1.3 Details of the supplier of the safety data sheet

LIQUI MOLY GmbH Jerg-Wieland-Str. 4 89081 Ulm-Lehr

Tel.: (+49) 0731-1420-0 Fax: (+49) 0731-1420-88

Qualified person's e-mail address: info@chemical-check.de, k.schnurbusch@chemical-check.de Please DO NOT use for requesting Safety Data Sheets.

1.4 Emergency telephone number

Emergency information services / official advisory body:

Telephone number of the company in case of emergencies:

+49 (0) 700 / 24 112 112 (LMR)

+1 872 5888271 (LMR)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) 1272/2008 (CLP)

The mixture is not classified as dangerous in the terms of the Regulation (EC) 1272/2008 (CLP).

2.2 Label elements

Labeling according to Regulation (EC) 1272/2008 (CLP)

EUH210-Safety data sheet available on request.

2.3 Other hazards

The mixture does not contain any vPvB substance (vPvB = very persistent, very bioaccumulative) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

The mixture does not contain any PBT substance (PBT = persistent, bioaccumulative, toxic) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

The mixture does not contain any substance with endocrine disrupting properties (< 0,1 %).

Page 2 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

SECTION 3: Composition/information on ingredients

3.1 Substances

n.a. 3.2 Mixtures

Distillates (petroleum), hydrotreated heavy paraffinic	
Registration number (REACH)	01-2119484627-25-XXXX
Index	649-467-00-8
EINECS, ELINCS, NLP, REACH-IT List-No.	265-157-1
CAS	64742-54-7
content %	50-<70
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Distillates (petroleum), hydrotreated light paraffinic	
Registration number (REACH)	01-2119487077-29-XXXX
Index	649-468-00-3
EINECS, ELINCS, NLP, REACH-IT List-No.	265-158-7
CAS	64742-55-8
content %	1-<5
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Distillates (petroleum), solvent-dewaxed heavy paraffinic	
Registration number (REACH)	01-2119471299-27-XXXX
Index	649-474-00-6
EINECS, ELINCS, NLP, REACH-IT List-No.	265-169-7
CAS	64742-65-0
content %	1-<5
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Impurities, test data and additional information may have been taken into account in classifying and labelling the product.

For the text of the H-phrases and classification codes (GHS/CLP), see Section 16.

The substances named in this section are given with their actual, appropriate classification!

For substances that are listed in appendix VI, table 3.1 of the regulation (EC) no. 1272/2008 (CLP regulation) this means that all notes that may be given here for the named classification have been taken into account.

SECTION 4: First aid measures

4.1 Description of first aid measures

First-aiders should ensure they are protected!

Never pour anything into the mouth of an unconscious person!

Inhalation

Remove person from danger area.

Supply person with fresh air and consult doctor according to symptoms.

Remove polluted, soaked clothing immediately, wash thoroughly with plenty of water and soap, in case of irritation of the skin (flare), consult a doctor.

Unsuitable cleaning product:

Solvent

Thinners

Eve contact

Remove contact lenses.

Wash thoroughly for several minutes using copious water. Seek medical help if necessary.

Indestion

Rinse the mouth thoroughly with water.

Do not induce vomiting. Consult doctor immediately.

4.2 Most important symptoms and effects, both acute and delayed

If applicable delayed symptoms and effects can be found in section 11 and the absorption route in section 4.1.

The following may occur:

Irritation of the eyes

Page 3 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

With long-term contact:

Drying of the skin.

Dermatitis (skin inflammation)

Oil acne Ingestion:

Gastrointestinal disturbances

Nausea Vomiting

In certain cases, the symptoms of poisoning may only appear after an extended period / after several hours.

4.3 Indication of any immediate medical attention and special treatment needed

Symptomatic treatment.

SECTION 5: Firefighting measures

5.1 Extinguishing media Suitable extinguishing media

CO2

Foam

Dry extinguisher

Unsuitable extinguishing media

High volume water jet

5.2 Special hazards arising from the substance or mixture

In case of fire the following can develop:

Oxides of carbon

Toxic gases

5.3 Advice for firefighters

For personal protective equipment see Section 8.

In case of fire and/or explosion do not breathe fumes.

Protective respirator with independent air supply.

According to size of fire

Full protection, if necessary.

Cool container at risk with water.

Dispose of contaminated extinction water according to official regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

In case of spillage or accidental release, wear personal protective equipment as specified in section 8 to prevent contamination.

Ensure sufficient ventilation, remove sources of ignition.

Avoid dust formation with solid or powder products.

Leave the danger zone if possible, use existing emergency plans if necessary.

Remove possible causes of ignition - do not smoke.

Ensure sufficient supply of air.

Avoid contact with eyes or skin.

If applicable, caution - risk of slipping.

6.1.2 For emergency responders

See section 8 for suitable protective equipment and material specifications.

6.2 Environmental precautions

If leakage occurs, dam up.

Resolve leaks if this possible without risk.

Prevent surface and ground-water infiltration, as well as ground penetration.

Prevent from entering drainage system.

If accidental entry into drainage system occurs, inform responsible authorities.

6.3 Methods and material for containment and cleaning up

Soak up with absorbent material (e.g. universal binding agent, sand, diatomaceous earth) and dispose of according to Section 13.

6.4 Reference to other sections

For personal protective equipment see Section 8 and for disposal instructions see Section 13.

Page 4 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

SECTION 7: Handling and storage

In addition to information given in this section, relevant information can also be found in section 8 and 6.1.

7.1 Precautions for safe handling

7.1.1 General recommendations

Avoid formation of oil mist.

Ensure good ventilation.

Keep away from sources of ignition - Do not smoke.

Do not heat to temperatures close to flash point.

Avoid contact with eyes.

Avoid long lasting or intensive contact with skin.

Do not carry cleaning cloths soaked in product in trouser pockets.

Eating, drinking, smoking, as well as food-storage, is prohibited in work-room.

Observe directions on label and instructions for use.

7.1.2 Notes on general hygiene measures at the workplace

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

7.2 Conditions for safe storage, including any incompatibilities

Not to be stored in gangways or stair wells.

Store product closed and only in original packing.

Do not store with oxidizing agents.

Under all circumstances prevent penetration into the soil.

Protect from direct sunlight and warming.

Store in a dry place.

7.3 Specific end use(s)

No information available at present.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Chemical Name	Oil mist, mineral			
WEL-TWA: 5 mg/m3 (Mineral oil, e	excluding metal	WEL-STEL:		
working fluids, ACGIH)				
Monitoring procedures:	-	Draeger - Oil Mist 1/a (67 33 031)		
BMGV:			Other information:	

Distillates (petroleum), hydrotreated heavy paraffinic									
Area of application Exposure route /		Effect on health	Descriptor	Value	Unit	Note			
	Environmental								
	compartment								
	Environment - oral (animal		PNEC	9,33	mg/kg feed				
	feed)								
Consumer	Human - inhalation	Long term, local effects	DNEL	1,2	mg/m3				
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,4	mg/m3				

Distillates (petroleum), hydrotreated light paraffinic									
Area of application	Exposure route / Environmental compartment	Effect on health	Descriptor	Value	Unit	Note			
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed				
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3				
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/day				

Œ

Page 5 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

	Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,6	mg/m3	
	Workers / employees	Human - dermal	Long term, systemic	DNEL	0,97	mg/kg	
			effects			bw/day	
ı	Workers / employees	Human - inhalation	Long term, systemic	DNEL	2,7	mg/m3	
			effects				

Distillates (petroleum), solvent-dewaxed heavy paraffinic									
Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note			
	Environmental								
	compartment								
	Environment - oral (animal		PNEC	9,33	mg/kg feed				
	feed)								
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3				
Consumer	Human - oral	Long term, systemic	DNEL	0,74	mg/kg bw/d				
		effects							
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3				
Workers / employees	Human - inhalation	Long term, systemic	DNEL	2,73	mg/m3				
		effects							
Workers / employees	Human - dermal	Long term, systemic	DNEL	0,97	mg/kg bw/d				
		effects							

Distillates (petroleum), hydrotreated heavy paraffinic									
Area of application	Area of application								
	Environmental								
	compartment								
	Environment - oral (animal		PNEC	9,33	mg/kg feed				
	feed)								

- WEL-TWA = Workplace Exposure Limit Long-term exposure limit (8-hour TWA (= time weighted average) reference period) EH40. AGW = "Arbeitsplatzgrenzwert" (workplace limit value, Germany).
- (8) = Inhalable fraction (Directive 2017/164/EU, Directive 2004/37/CE). (9) = Respirable fraction (Directive 2017/164/EU, Directive 2004/37/CE). (11) = Inhalable fraction (Directive 2004/37/CE). (12) = Inhalable fraction. Respirable fraction in those Member States that implement, on the date of the entry into force of this Directive, a biomonitoring system with a biological limit value not exceeding 0,002 mg Cd/g creatinine in urine (Directive 2004/37/CE). | WEL-STEL = Workplace Exposure Limit Short-term exposure limit (15-minute reference period).
- (8) = Inhalable fraction (2017/164/EU, 2017/2398/EU). (9) = Respirable fraction (2017/164/EU), 2017/2398/EU). (10) = Short-term exposure limit value in relation to a reference period of 1 minute (2017/164/EU). | BMGV = Biological monitoring guidance value EH40. BGW = "Biologischer Grenzwert" (biological limit value, Germany) | Other information: Sen = Capable of causing occupational asthma. Sk = Can be absorbed through skin. Carc = Capable of causing cancer and/or heritable genetic damage.
- ** = The exposure limit for this substance is repealed through the TRGS 900 (Germany) of January 2006 with the goal of revision.
- (13) = The substance can cause sensitisation of the skin and of the respiratory tract (Directive 2004/37/CE), (14) = The substance can cause sensitisation of the skin (Directive 2004/37/CE).

8.2 Exposure controls

8.2.1 Appropriate engineering controls

Ensure good ventilation. This can be achieved by local suction or general air extraction.

If this is insufficient to maintain the concentration under the WEL or AGW values, suitable breathing protection should be worn.

Applies only if maximum permissible exposure values are listed here.

Suitable assessment methods for reviewing the effectiveness of protection measures adopted include metrological and non-metrological investigative techniques.

These are specified by e.g. EN 14042.

EN 14042 "Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents".

8.2.2 Individual protection measures, such as personal protective equipment

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Eye/face protection:

With danger of contact with eyes.

Page 6 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Tight fitting protective goggles with side protection (EN 166).

Skin protection - Hand protection:

Protective gloves, oil resistant (EN ISO 374).

If applicable

Protective nitrile gloves (EN ISO 374).

Permeation time (penetration time) in minutes:

Minimum layer thickness in mm:

0,4

Protective hand cream recommended.

The breakthrough times determined in accordance with EN 16523-1 were not obtained under practical conditions.

The recommended maximum wearing time is 50% of breakthrough time.

Protective working garments (e.g. safety shoes EN ISO 20345, long-sleeved protective working garments).

Respiratory protection:

Normally not necessary.

With oil mist formation:

Filter A P2 (EN 14387), code colour brown, white

Observe wearing time limitations for respiratory protection equipment.

Thermal hazards:

Not applicable

Additional information on hand protection - No tests have been performed.

In the case of mixtures, the selection has been made according to the knowledge available and the information about the contents.

Selection of materials derived from glove manufacturer's indications.

Final selection of glove material must be made taking the breakthrough times, permeation rates and degradation into account. Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to

In the case of mixtures, the resistance of glove materials cannot be predicted and must therefore be tested before use.

The exact breakthrough time of the glove material can be requested from the protective glove manufacturer and must be observed.

8.2.3 Environmental exposure controls

No information available at present.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Colour: Odour:

Physical state:

Melting point/freezing point:

Boiling point or initial boiling point and boiling range:

Flammability:

Lower explosion limit:

Upper explosion limit:

Flash point:

Auto-ignition temperature:

Decomposition temperature:

pH:

Kinematic viscosity:

Kinematic viscosity:

Solubility:

Partition coefficient n-octanol/water (log value):

Vapour pressure:

Density and/or relative density: Relative vapour density:

Particle characteristics:

9.2 Other information

Explosives:

n.a.

Liquid Brown Characteristic

There is no information available on this parameter.

There is no information available on this parameter.

Flammable

There is no information available on this parameter. There is no information available on this parameter.

230 °C

There is no information available on this parameter. There is no information available on this parameter.

Mixture is non-soluble (in water).

71,3 mm2/s (40°C) 12,01 mm2/s (100°C)

Insoluble

Does not apply to mixtures.

There is no information available on this parameter.

0,85 g/ml

There is no information available on this parameter.

Does not apply to liquids.

Page 7 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Oxidising liquids:

No
Bulk density:

n.a.

SECTION 10: Stability and reactivity

10.1 Reactivity

Not to be expected

10.2 Chemical stability

Stable with proper storage and handling.

10.3 Possibility of hazardous reactions

No dangerous reactions are known.

10.4 Conditions to avoid

Heating, open flame, ignition sources

10.5 Incompatible materials

Avoid contact with strong oxidizing agents.

10.6 Hazardous decomposition products

No decomposition when used as directed.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Possibly more information on health effects, see Section 2.1 (classification).

Optimal Synth 5W-30		,	,			
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:						n.d.a.
Acute toxicity, by dermal route:						n.d.a.
Acute toxicity, by inhalation:						n.d.a.
Skin corrosion/irritation:						n.d.a.
Serious eye damage/irritation:						n.d.a.
Respiratory or skin						n.d.a.
sensitisation:						
Germ cell mutagenicity:						n.d.a.
Carcinogenicity:						n.d.a.
Reproductive toxicity:						n.d.a.
Specific target organ toxicity -						n.d.a.
single exposure (STOT-SE):						
Specific target organ toxicity -						n.d.a.
repeated exposure (STOT-RE):						
Aspiration hazard:						n.d.a.
Symptoms:						n.d.a.

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	Analogous
					Toxicity)	conclusion
Acute toxicity, by dermal route:	LD50	>2000	mg/kg	Rabbit	OECD 402 (Acute	Analogous
					Dermal Toxicity)	conclusion
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol,
					Inhalation Toxicity)	Analogous
						conclusion
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant,
					Dermal	Analogous
					Irritation/Corrosion)	conclusion
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant,
					Irritation/Corrosion)	Analogous
						conclusion
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin
sensitisation:					Sensitisation)	contact),
						Analogous
						conclusion

Page 8 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Germ cell mutagenicity:					OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	NegativeChinese hamster
Germ cell mutagenicity:				Salmonella typhimurium	OECD 471 (Bacterial Reverse Mutation Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian Erythrocyte Micronucleus Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mammalian	OECD 476 (In Vitro Mammalian Cell Gene Mutation Test)	Negative, Analogous conclusion
Carcinogenicity:				Mouse	OECD 451 (Carcinogenicity Studies)	Negative, Analogous conclusion78 weeks, dermal
Reproductive toxicity:				Rat	OECD 421 (Reproduction/Developm ental Toxicity Screening Test)	Negative, Analogous conclusionoral
Reproductive toxicity (Developmental toxicity):				Rat	OECD 414 (Prenatal Developmental Toxicity Study)	Negative, Analogous conclusiondermal
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	~1000	mg/kg bw/d	Rabbit	OECD 410 (Repeated Dose Dermal Toxicity - 90-Day)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	<30	mg/kg	Rat	OECD 411 (Subchronic Dermal Toxicity - 90-day Study)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), inhalat.:	NOEC	~220	mg/m3	Rat	OECD 412 (Subacute Inhalation Toxicity - 28- Day Study)	Analogous conclusion, Aerosol
Symptoms:						coughing, respiratory distress, nausea and vomiting., diarrhoea
Specific target organ toxicity - repeated exposure (STOT-RE), oral:	LOAEL	125	mg/kg	Rat	OECD 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)	Analogous conclusion

Distillates (petroleum), hydrotr	eated light pa	raffinic				
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	Analogous
					Toxicity)	conclusion
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	Analogous
					Dermal Toxicity)	conclusion
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol,
					Inhalation Toxicity)	Analogous
						conclusion
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant,
					Dermal	Analogous
					Irritation/Corrosion)	conclusion
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant,
					Irritation/Corrosion)	Analogous
						conclusion
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin
sensitisation:					Sensitisation)	contact),
						Analogous
						conclusion

Page 9 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative,
				typhimurium	Reverse Mutation Test)	Analogous
						conclusion
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro	Negative,
					Mammalian	Analogous
					Chromosome	conclusionChines
					Aberration Test)	e hamster
Reproductive toxicity				Rat	OECD 414 (Prenatal	Negative,
(Developmental toxicity):					Developmental Toxicity	Analogous
` ' '					Study)	conclusion
Carcinogenicity:				Mouse	OECD 451	Negative,
ů ,					(Carcinogenicity Studies)	Analogous
					, , ,	conclusiondermal
Reproductive toxicity:	NOAEL	1000	mg/kg	Rat	OECD 421	Analogous
,			bw/d		(Reproduction/Developm	conclusiondermal
					ental Toxicity Screening	
					Test)	
Aspiration hazard:					1 2 3 7	Yes
Specific target organ toxicity -	NOAEL	125	mg/kg	Rat	OECD 408 (Repeated	Analogous
repeated exposure (STOT-RE),			bw/d		Dose 90-Day Oral	conclusion
oral:					Toxicity Study in	
					Rodents)	
Specific target organ toxicity -	NOAEL	<30	mg/kg	Rat	OECD 411 (Subchronic	Analogous
repeated exposure (STOT-RE),			bw/d		Dermal Toxicity - 90-day	conclusion
dermal:			311, 3		Study)	
Specific target organ toxicity -	NOAEL	1000	mg/kg	Rabbit	OECD 410 (Repeated	Analogous
repeated exposure (STOT-RE),			9,9	1100011	Dose Dermal Toxicity -	conclusion
dermal:					90-Day)	00.10.00.01.
Specific target organ toxicity -	NOAEL	0.05	mg/l	Rat	OECD 412 (Subacute	Aerosol.
repeated exposure (STOT-RE),		-,	13	1	Inhalation Toxicity - 28-	Analogous
inhalat.:					Day Study)	conclusion
Specific target organ toxicity -	NOAEL	0,15	mg/l	Rat	,,	Aerosol,
repeated exposure (STOT-RE),		-,	13	1		Analogous
inhalat.:						conclusion13
						weeks

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral Toxicity)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute Dermal Toxicity)	
Acute toxicity, by inhalation:	LD50	>5,53	mg/l/4h	Rat	OECD 403 (Acute Inhalation Toxicity)	Aerosol
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute Dermal Irritation/Corrosion)	Not irritant, Analogous conclusion
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye Irritation/Corrosion)	Not irritant, Analogous conclusion
Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	No (skin contact), Analogous conclusion
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian Erythrocyte Micronucleus Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	Negative, Analogous conclusion Chinese hamste
Germ cell mutagenicity:				Salmonella typhimurium	OECD 471 (Bacterial Reverse Mutation Test)	Negative, Analogous conclusion

Page 10 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

O - man and the manufacture				Maria	OFOD 470 (la) (ital	NI
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative,
					Mammalian Cell Gene	Analogous
<u> </u>				1.4	Mutation Test)	conclusion
Carcinogenicity:				Mouse	OECD 451	Negative,
					(Carcinogenicity Studies)	Analogous
						conclusion 78
						weeks, dermal
Reproductive toxicity				Rat	OECD 414 (Prenatal	Negative,
(Developmental toxicity):					Developmental Toxicity	Analogous
					Study)	conclusion
						dermal
Carcinogenicity:				Mouse		Female, Negative
Reproductive toxicity:				Rat		Negative
Reproductive toxicity (Effects				Rat	OECD 421	Negative,
on fertility):					(Reproduction/Developm	Analogous
• /					ental Toxicity Screening	conclusion oral,
					Test)	dermal
Specific target organ toxicity -	NOAEL	~1000	mg/kg	Rabbit	OEĆD 410 (Repeated	Analogous
repeated exposure (STOT-RE),			bw/d		Dose Dermal Toxicity -	conclusion
dermal:					90-Day)	
Aspiration hazard:						Yes
Symptoms:						mucous
						membrane
						irritation,
						dizziness,
						nausea
Specific target organ toxicity -	NOAEL	30	mg/kg/d	Rat	OECD 411 (Subchronic	Analogous
repeated exposure (STOT-RE),					Dermal Toxicity - 90-day	conclusion
dermal:					Study)	
Specific target organ toxicity -	NOAEL	0,22	mg/l	Rat	,	Aerosol,
repeated exposure (STOT-RE),		- /	3			Analogous
inhalat.:						conclusion 4
miliate.						weeks
Specific target organ toxicity -	NOAEL	0,15	mg/l	Rat		Aerosol.
repeated exposure (STOT-RE).		3,.3	1.1.9/.			Analogous
inhalat.:						conclusion 13
iiiiaiat						weeks
						MEGV2

11.2. Information on other hazards

Optimal Synth 5W-30						
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Endocrine disrupting properties:						Does not apply
						to mixtures.
Other information:						No other
						relevant
						information
						available on
						adverse effects
						on health.

SECTION 12: Ecological information

Possibly more information on environmental effects, see Section 2.1 (classification).

Optimal Synth 5W-30							
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	-						n.d.a.
12.1. Toxicity to daphnia:							n.d.a.
12.1. Toxicity to algae:							n.d.a.
12.2. Persistence and							n.d.a.
degradability:							
12.3. Bioaccumulative							n.d.a.
potential:							

Page 11 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009 Valid from: 05.05.2023

PDF print date: 08.05.2023 Optimal Synth 5W-30

12.4. Mobility in soil:	n.d.a.
12.5. Results of PBT	n.d.a.
and vPvB assessment	
12.6. Endocrine	Does not apply
disrupting properties:	to mixtures.
12.7. Other adverse	No information
effects:	available on
	other adverse
	effects on the
	environment.
Other information:	According to the
	recipe, contains
	no AOX.

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	NOEC/NOEL	96h	>100	mg/l	Pimephales promelas	OECD 203 (Fish, Acute Toxicity Test)	
12.1. Toxicity to fish:	NOEC/NOEL	14d	1000	mg/l	Oncorhynchus mykiss	QSÁR	
12.1. Toxicity to daphnia:	EL50	48h	10000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	Analogous conclusion
12.1. Toxicity to daphnia:	LL50	96h	>10000	mg/l		OECD 202 (Daphnia sp. Acute Immobilisation Test)	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproduction Test)	Analogous conclusion
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	
12.2. Persistence and degradability:		28d	31	%		OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Not readily biodegradable, Analogous conclusion
12.5. Results of PBT and vPvB assessment						, , , , , , , , , , , , , , , , , , , ,	No PBT substance, No vPvB substance
Water solubility:							Insoluble

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	NOEC/NOEL	28d	>1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Pimephales promelas	OECD 203 (Fish, Acute Toxicity Test)	Analogous conclusion
12.1. Toxicity to fish:	NOEC/NOEL	14d	1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproduction Test)	Analogous conclusion
12.1. Toxicity to daphnia:	EL50	48h	> 10000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	Analogous conclusion

Page 12 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	Analogous
					a subcapitata	Growth Inhibition	conclusion
						Test)	
12.1. Toxicity to algae:	EC50	72h	>100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	Analogous
					a subcapitata	Growth Inhibition	conclusion
						Test)	
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Not readily
degradability:						(Ready	biodegradable,
						Biodegradability -	Analogous
						Manometric	conclusion
						Respirometry Test)	
12.3. Bioaccumulative	Log Pow		>6				@20°C
potential:							
12.3. Bioaccumulative							Not to be
potential:							expected
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
							vPvB substance

Distillates (petroleum), s				T			
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	>1000	mg/l	Salmo gairdneri		
12.1. Toxicity to fish:	LC50	96h	>5000	mg/l	Oncorhynchus	OECD 203 (Fish,	
					mykiss	Acute Toxicity	
						Test)	
12.1. Toxicity to fish:	NOEC/NOEL	21d	1000	mg/l	Oncorhynchus	QSAR	
•					mykiss		
12.1. Toxicity to fish:	LC50	96h	>100	mg/l	Pimephales	OECD 203 (Fish,	Analogous
•					promelas	Acute Toxicity	conclusion
					'	Test)	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OEĆD 211	Analogous
, ,					'	(Daphnia magna	conclusion
						Reproduction Test)	
12.1. Toxicity to daphnia:	EC50	48h	>1000	mg/l	Daphnia magna	OECD 202	Analogous
				111.9.1	- aprillar magna	(Daphnia sp.	conclusion
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to algae:	EC50	96h	>1000	mg/l	Scenedesmus	1000	
remeny to algue.		00	1.000		subspicatus		
12.2. Persistence and		28d	6	%		OECD 301 B	Analogous
degradability:						(Ready	conclusion
g						Biodegradability -	
						Co2 Evolution	
						Test)	
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Not readily
degradability:			•	"		(Ready	biodegradable
acg. addomy.						Biodegradability -	(Analogous
						Manometric	conclusion)
						Respirometry Test)	001101031011)
12.3. Bioaccumulative	Log Pow	+	>3			1 (Copilotticity 1 (Cot)	Low
potential:	Logiow		~				LOW
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
and vi vb assessment							vPvB substance
Toxicity to bacteria:	EC20	6h	>1000	mg/l	Pseudomonas	+	VI VD Substant
Toxiony to baotona.	2020	011	7.000	1119/1	fluorescens		
					HUULESCELIS		

SECTION 13: Disposal considerations

13.1 Waste treatment methods For the substance / mixture / residual amounts

Page 13 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Soaked polluted cloths, paper or other organic materials represent a fire hazard and should be controlled, collected and disposed of.

EC disposal code no .:

The waste codes are recommendations based on the scheduled use of this product.

Owing to the user's specific conditions for use and disposal, other waste codes may be

allocated under certain circumstances. (2014/955/EU)

13 01 10 mineral based non-chlorinated hydraulic oils

Recommendation:

Sewage disposal shall be discouraged.

Pay attention to local and national official regulations.

E.g. dispose at suitable refuse site.

E.g. suitable incineration plant.

For contaminated packing material

Pay attention to local and national official regulations.

Empty container completely.

Uncontaminated packaging can be recycled.

Dispose of packaging that cannot be cleaned in the same manner as the substance.

SECTION 14: Transport information

General statements

Transport by road/by rail (ADR/RID)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name:

Not applicable

14.3. Transport hazard class(es):

14.4. Packing group:

14.5. Environmental hazards:

14.6. Environmental hazards:

14.7. Environmental hazards:

14.8. Environmental hazards:

15. Environmental hazards:

16. Not applicable

17. Not applicable

18. Not applicable

19. Not applicable

19. Not applicable

Transport category:

Not applicable

Transport by sea (IMDG-code)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name:

Not applicable

14.3. Transport hazard class(es):

14.4. Packing group:

14.5. Environmental hazards:

Mot applicable

Not applicable

Marine Pollutant:

EmS:

Not applicable

Not applicable

Transport by air (IATA)

14.1. UN number or ID number: Not applicable

14.2. UN proper shipping name:

Not applicable

14.3. Transport hazard class(es):Not applicable14.4. Packing group:Not applicable14.5. Environmental hazards:Not applicable

14.6. Special precautions for user

Unless specified otherwise, general measures for safe transport must be followed.

14.7. Maritime transport in bulk according to IMO instruments

Non-dangerous material according to Transport Regulations.

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

Observe restrictions:

General hygiene measures for the handling of chemicals are applicable.

Regulation (EU) No 649/2012 'concerning the export and import of hazardous chemicals' must be adhered to, as the product contains a substance that falls within the scope of this Regulation.

(B)

Page 14 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

Directive 2010/75/EU (VOC):

< 1 %

National requirements/regulations on safety and health protection must be applied when using work equipment.

15.2 Chemical safety assessment

A chemical safety assessment is not provided for mixtures.

SECTION 16: Other information

Revised sections:

1

Classification and processes used to derive the classification of the mixture in accordance with the ordinance (EG) 1272/2008 (CLP):

Not applicable

The following phrases represent the posted Hazard Class and Risk Category Code (GHS/CLP) of the product and the constituents (specified in Section 2 and 3).

H304 May be fatal if swallowed and enters airways.

Asp. Tox. — Aspiration hazard

Key literature references and sources for data:

Regulation (EC) No 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP) as amended.

Guidelines for the preparation of safety data sheets as amended (ECHA).

Guidelines on labelling and packaging according to the Regulation (EG) Nr. 1272/2008 (CLP) as amended (ECHA).

Safety data sheets for the constituent substances.

ECHA Homepage - Information about chemicals.

GESTIS Substance Database (Germany).

German Environment Agency "Rigoletto" information site on substances that are hazardous to water (Germany).

EU Occupation Exposure Limits Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU, (EU) 2017/164, (EU) 2019/1831, each as amended.

National Lists of Occupational Exposure Limits for each country as amended.

Regulations on the transport of hazardous goods by road, rail, sea and air (ADR, RID, IMDG, IATA) as amended.

Any abbreviations and acronyms used in this document:

acc., acc. to according, according to

ADR Accord européen relatif au transport international des marchandises Dangereuses par Route (= European Agreement concerning the International Carriage of Dangerous Goods by Road)

AOX Adsorbable organic halogen compounds

approx. approximately

Art., Art. no. Article number

ASTM ASTM International (American Society for Testing and Materials)

ATE Acute Toxicity Estimate

BAM Bundesanstalt für Materialforschung und -prüfung (Federal Institute for Materials Research and Testing, Germany)
BAuA Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (= Federal Institute for Occupational Health and Safety, Germany)

BCF Bioconcentration factor

BSEF The International Bromine Council

bw body weight

CAS Chemical Abstracts Service

CLP Classification, Labelling and Packaging (REGULATION (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures)

CMR carcinogenic, mutagenic, reproductive toxic

DMEL Derived Minimum Effect Level
DNEL Derived No Effect Level
DOC Dissolved organic carbon

dw dry weight

e.g. for example (abbreviation of Latin 'exempli gratia'), for instance

EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants)

Page 15 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

Revision date / version: 05.05.2023 / 0010

Replacing version dated / version: 25.11.2021 / 0009

Valid from: 05.05.2023 PDF print date: 08.05.2023 Optimal Synth 5W-30

EC European Community

ECHA European Chemicals Agency

ECx, ELx (x = 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect

EEC European Economic Community

EINECS European Inventory of Existing Commercial Chemical Substances

ELINCS European List of Notified Chemical Substances

EN European Norms

EPA United States Environmental Protection Agency (United States of America)

ErCx, EµCx, ErLx (x = 10, 50) Effect Concentration/Level of x % on inhibition of the growth rate (algae, plants)

etc. et cetera EU European Union

EVAL Ethylene-vinyl alcohol copolymer

Fax. Fax number gen. general

GHS Globally Harmonized System of Classification and Labelling of Chemicals

GWP Global warming potential

Koc Adsorption coefficient of organic carbon in the soil

Kow octanol-water partition coefficient

IARC International Agency for Research on Cancer IATA International Air Transport Association IBC (Code) International Bulk Chemical (Code)

IMDG-code International Maritime Code for Dangerous Goods

incl. including, inclusive

IUCLID International Uniform Chemical Information Database IUPAC International Union for Pure Applied Chemistry LC50 Lethal Concentration to 50 % of a test population

LD50 Lethal Dose to 50% of a test population (Median Lethal Dose)

Log Koc Logarithm of adsorption coefficient of organic carbon in the soil Log Kow, Log Pow Logarithm of octanol-water partition coefficient

LQ Limited Quantities

MARPOL International Convention for the Prevention of Marine Pollution from Ships

n.a. not applicablen.av. not availablen.c. not checkedn.d.a. no data available

NIOSH National Institute for Occupational Safety and Health (USA)

NLP No-longer-Polymer

NOEC, NOEL No Observed Effect Concentration/Level OECD Organisation for Economic Co-operation and Development

org. organic

OSHA Occupational Safety and Health Administration (USA)

PBT persistent, bioaccumulative and toxic

PE Polyethylene

PNEC Predicted No Effect Concentration

ppm parts per million PVC Polyvinylchloride

REACHRegistration, Evaluation, Authorisation and Restriction of Chemicals (REGULATION (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals)

REACH-IT List-No. 9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS No. or other numerical identifier. List Numbers do not have any legal significance, rather they are purely technical identifiers for processing a submission via REACH-IT.

RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (= Regulation concerning the International Carriage of Dangerous Goods by Rail)

SVHC Substances of Very High Concern

Tel. Telephone

TOC Total organic carbon

UN RTDG United Nations Recommendations on the Transport of Dangerous Goods

VOC Volatile organic compounds

vPvB very persistent and very bioaccumulative

wwt wet weight

The statements made here should describe the product with regard to the necessary safety precautions - they are not meant to guarantee definite characteristics - but they are based on our present up-to-date knowledge. No responsibility.

These statements were made by:

Page 16 of 16

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 05.05.2023 / 0010 Replacing version dated / version: 25.11.2021 / 0009 Valid from: 05.05.2023

PDF print date: 08.05.2023 Optimal Synth 5W-30

Optimal Cylini Cylin Cyl
Chemical Check GmbH, Chemical Check Platz 1-7, D-32839 Steinheim, Tel.: +49 5233 94 17 0, Fax: +49 5233 94 17 90
© by Chemical Check GmbH Gefahrstoffberatung. The copying or changing of this document is forbidden except with consent of the Chemical Check GmbH Gefahrstoffberatung.