

Page 1 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II

SECTION 1: Identification of the substance/mixture and of the company/undertaking

1.1 Product identifier

Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

1.2 Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses of the substance or mixture:

Additives

Uses advised against:

No information available at present.

1.3 Details of the supplier of the safety data sheet

ILQUI MOLY GmbH Jerg-Wieland-Str. 4

89081 Ulm-Lehr Tel.: (+49) 0731-1420-0 Fax: (+49) 0731-1420-88

Qualified person's e-mail address: info@chemical-check.de, k.schnurbusch@chemical-check.de Please DO NOT use for requesting Safety Data Sheets.

1.4 Emergency telephone number

Emergency information services / official advisory body:

Landspitali- The National University Hospital of Iceland, tel. +354 543 2222 or 112 (valid only for Iceland) **Telephone number of the company in case of emergencies:**

+49 (0) 700 / 24 112 112 (LMR) +1 872 5888271 (LMR)

SECTION 2: Hazards identification

2.1 Classification of the substance or mixture

Classification according to Regulation (EC) 1272/2008 (CLP) The mixture is not classified as dangerous in the terms of the Regulation (EC) 1272/2008 (CLP).

2.2 Label elements

Labeling according to Regulation (EC) 1272/2008 (CLP)

Page 2 of 21

GB

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

EUH210-Safety data sheet available on request.

2.3 Other hazards

The mixture does not contain any vPvB substance (vPvB = very persistent, very bioaccumulative) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

The mixture does not contain any PBT substance (PBT = persistent, bioaccumulative, toxic) or is not included under XIII of the regulation (EC) 1907/2006 (< 0,1 %).

The mixture does not contain any substance with endocrine disrupting properties (< 0,1 %).

Dangerous vapours heavier than air.

Product floats on the water surface.

Product can re-ignite itself.

SECTION 3: Composition/information on ingredients

3.1 Substances

^{n.a.} 3.2 Mixtures	
Distillates (petroleum), hydrotreated heavy paraffinic	
Registration number (REACH)	01-2119484627-25-XXXX
Index	649-467-00-8
EINECS, ELINCS, NLP, REACH-IT List-No.	265-157-1
CAS	64742-54-7
content %	<20
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304
White mineral oil (Natural oil)	
Registration number (REACH)	01-2119487078-27-XXXX
Index	
EINECS, ELINCS, NLP, REACH-IT List-No.	232-455-8
CAS	8042-47-5
content %	<20
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304
	· ·
Distillates (petroleum), hydrotreated light paraffinic	
Registration number (REACH)	01-2119487077-29-XXXX
Index	649-468-00-3
EINECS, ELINCS, NLP, REACH-IT List-No.	265-158-7
CAS	64742-55-8
content %	<20
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304
Distillates (petroleum), solvent-dewaxed heavy paraffinic	
Registration number (REACH)	01-2119471299-27-XXXX
Index	649-474-00-6
EINECS, ELINCS, NLP, REACH-IT List-No.	265-169-7
CAS	64742-65-0
content %	<20
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304
Distillates (petroleum), solvent-dewaxed light paraffinic	
Registration number (REACH)	01-2119480132-48-XXXX
Index	649-469-00-9
EINECS, ELINCS, NLP, REACH-IT List-No.	265-159-2
CAS	64742-56-9
content %	<20
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Asp. Tox. 1, H304

Page 3 of 21

ആ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

2-butoxyethyl acetate	Substance for which an EU exposure limit value applies.
Registration number (REACH)	01-2119475112-47-XXXX
Index	607-038-00-2
EINECS, ELINCS, NLP, REACH-IT List-No.	203-933-3
CAS	112-07-2
content %	1-<10
Classification according to Regulation (EC) 1272/2008 (CLP), M-factors	Acute Tox. 4, H302
	Acute Tox. 4, H312
	Acute Tox. 4, H332
Specific Concentration Limits and ATE	ATE (oral): 1880 mg/kg
	ATE (dermal): 1500 mg/kg
	ATE (as inhalation, Dusts or mist): 1,5 mg/l/4h
	ATE (as inhalation, Vapours): 11 mg/l/4h

Impurities, test data and additional information may have been taken into account in classifying and labelling the product.

For the text of the H-phrases and classification codes (GHS/CLP), see Section 16.

The substances named in this section are given with their actual, appropriate classification!

For substances that are listed in appendix VI, table 3.1 of the regulation (EC) no. 1272/2008 (CLP regulation) this means that all notes that may be given here for the named classification have been taken into account.

The addition of the highest concentrations listed here can result in a classification. Only when this classification is listed in Section 2 does it apply. In all other cases the total concentration is below the classification.

SECTION 4: First aid measures

4.1 Description of first aid measures

First-aiders should ensure they are protected!

Never pour anything into the mouth of an unconscious person!

Inhalation

Remove person from danger area.

Supply person with fresh air and consult doctor according to symptoms.

Skin contact

Remove polluted, soaked clothing immediately, wash thoroughly with plenty of water and soap, in case of irritation of the skin (flare), consult a doctor.

Eye contact

Remove contact lenses.

Wash thoroughly for several minutes using copious water. Seek medical help if necessary.

Ingestion

Rinse the mouth thoroughly with water.

Do not induce vomiting - give copious water to drink. Consult doctor immediately.

4.2 Most important symptoms and effects, both acute and delayed

If applicable delayed symptoms and effects can be found in section 11 and the absorption route in section 4.1.

The following may occur: Irritation of the eyes Product removes fat. Drying of the skin.

Dermatitis (skin inflammation)

In certain cases, the symptoms of poisoning may only appear after an extended period / after several hours.

4.3 Indication of any immediate medical attention and special treatment needed Symptomatic treatment.

SECTION 5: Firefighting measures

5.1 Extinguishing media Suitable extinguishing media CO2

Foam Dry extinguisher

Page 4 of 21

ആ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

Unsuitable extinguishing media

High volume water jet **5.2 Special hazards arising from the substance or mixture** In case of fire the following can develop:

Oxides of carbon Toxic gases

5.3 Advice for firefighters

For personal protective equipment see Section 8. In case of fire and/or explosion do not breathe fumes. Protective respirator with independent air supply. According to size of fire Full protection, if necessary. Cool container at risk with water. Dispose of contaminated extinction water according to official regulations.

SECTION 6: Accidental release measures

6.1 Personal precautions, protective equipment and emergency procedures

6.1.1 For non-emergency personnel

In case of spillage or accidental release, wear personal protective equipment as specified in section 8 to prevent contamination. Ensure sufficient ventilation, remove sources of ignition.

Avoid dust formation with solid or powder products.

Leave the danger zone if possible, use existing emergency plans if necessary.

Ensure sufficient supply of air.

Remove possible causes of ignition - do not smoke.

Avoid formation of oil mist.

Avoid contact with eyes or skin.

If applicable, caution - risk of slipping.

6.1.2 For emergency responders

See section 8 for suitable protective equipment and material specifications.

6.2 Environmental precautions

If leakage occurs, dam up.

Resolve leaks if this possible without risk.

Prevent from entering drainage system.

Prevent surface and ground-water infiltration, as well as ground penetration.

If accidental entry into drainage system occurs, inform responsible authorities.

6.3 Methods and material for containment and cleaning up

Soak up with absorbent material (e.g. universal binding agent) and dispose of according to Section 13.

6.4 Reference to other sections

For personal protective equipment see Section 8 and for disposal instructions see Section 13.

SECTION 7: Handling and storage

In addition to information given in this section, relevant information can also be found in section 8 and 6.1.

7.1 Precautions for safe handling

7.1.1 General recommendations

Ensure good ventilation.

Avoid contact with eyes or skin.

Do not heat to temperatures close to flash point.

Eating, drinking, smoking, as well as food-storage, is prohibited in work-room.

Do not carry cleaning cloths soaked in product in trouser pockets.

Observe directions on label and instructions for use.

7.1.2 Notes on general hygiene measures at the workplace

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Page 5 of 21

œ)

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

7.2 Conditions for safe storage, including any incompatibilities

Not to be stored in gangways or stair wells. Store product closed and only in original packing. Solvent resistant floor Do not store with oxidizing agents. Protect from direct sunlight and warming.

7.3 Specific end use(s)

No information available at present.

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Chemical Name 2-butoxyethy		
WEL-TWA: 20 ppm (133 mg/m3) (WEL-TWA, EU	J) WEL-STEL: 50 ppm (333 mg/m3) (WEL-STEL, EU)	
Monitoring procedures:	 DFG (D) (Loesungsmittelgemische 2), DFG (E) (Loesungsm 	ittelgemische 6) - 2014
	- OSHA 83 (2-Butoxyethanol (Butyl Cellosolve)) - 1990	
BMGV:	Other information: Sk	(WEL)
	· · · · · · · · · · · · · · · · · · ·	· · ·
Chemical Name Oil mist, min	eral	
WEL-TWA: 5 mg/m3 (Mineral oil, excluding meta	al WEL-STEL:	
working fluids, ACGIH)		
Monitoring procedures:	- Draeger - Oil Mist 1/a (67 33 031)	
BMGV:	Other information:	

Distillates (petroleum), hy	drotreated heavy paraffinic					
Area of application	Exposure route / Environmental	Effect on health	Descriptor	Value	Unit	Note
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	

White mineral oil (Natura	l oil)					
Area of application	Exposure route / Environmental compartment	Effect on health	Descriptor	Value	Unit	Note
Consumer	Human - dermal	Long term, systemic effects	DNEL	92	mg/kg bw/day	
Consumer	Human - inhalation	Long term, systemic effects	DNEL	35	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	25	mg/kg bw/day	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	217,5	mg/kg bw/day	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	164,56	mg/m3	

Distillates (petroleum), hydrotreated light paraffinic

Page 6 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

œ

Area of application	Exposure route /	Effect on health	Descriptor	Value	Unit	Note
	Environmental					
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/day	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg bw/day	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	

Distillates (petroleum), solvent-dewaxed heavy paraffinic						
Area of application	Exposure route / Environmental	Effect on health	Descriptor	Value	Unit	Note
	compartment					
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/d	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg bw/d	

Distillates (petroleum), so	lvent-dewaxed light paraffinic					
Area of application	Exposure route / Environmental compartment	Effect on health	Descriptor	Value	Unit	Note
	Environment - oral (animal feed)		PNEC	9,33	mg/kg feed	
Consumer	Human - inhalation	Long term, local effects	DNEL	1,19	mg/m3	
Consumer	Human - oral	Long term, systemic effects	DNEL	0,74	mg/kg bw/day	
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	2,73	mg/m3	
Workers / employees	Human - inhalation	Long term, local effects	DNEL	5,58	mg/m3	
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	0,97	mg/kg bw/day	

rea of application	Exposure route / Environmental compartment	Effect on health	Descriptor	Value	Unit	Note
	Environment - freshwater		PNEC	0,304	mg/l	
	Environment - marine		PNEC	0,0304	mg/l	
	Environment - sediment, freshwater		PNEC	2,03	mg/kg dw	
	Environment - sediment, marine		PNEC	0,203	mg/kg dw	
	Environment - sporadic (intermittent) release		PNEC	0,56	mg/l	
	Environment - sewage treatment plant		PNEC	90	mg/l	
	Environment - soil		PNEC	0,415	mg/kg	

Page 7 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

ആ

	Environment - oral (animal feed)		PNEC	60	mg/kg feed
Consumer	Human - dermal	Short term, systemic effects	DNEL	72	mg/kg bw/d
Consumer	Human - inhalation	Short term, systemic effects	DNEL	499	mg/m3
Consumer	Human - oral	Short term, systemic effects	DNEL	18	mg/kg bw/d
Consumer	Human - inhalation	Long term, local effects	DNEL	200	mg/kg bw/d
Consumer	Human - oral	Long term, systemic effects	DNEL	8,6	mg/kg bw/d
Consumer	Human - dermal	Long term, systemic effects	DNEL	102	mg/kg bw/d
Consumer	Human - inhalation	Long term, systemic effects	DNEL	80	mg/m3
Workers / employees	Human - dermal	Long term, systemic effects	DNEL	169	mg/kg bw/d
Workers / employees	Human - inhalation	Long term, systemic effects	DNEL	133	mg/m3
Workers / employees	Human - inhalation	Short term, local effects	DNEL 333		mg/m3
Workers / employees	Human - dermal	Short term, systemic effects	DNEL	120	mg/kg bw/d
Workers / employees	Human - inhalation	Short term, systemic effects	DNEL	775	mg/m3

Inited Kingdom | WEL-TWA = Workplace Exposure Limit - Long-term exposure limit - 8-hour TWA (= time weighted average) reference period (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).

(EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU: (8) = Inhalable fraction (2004/37/CE, 2017/164/EU). (9) = Respirable fraction (2004/37/CE, 2017/164/EU). (11) = Inhalable fraction

(8) = Inhalable fraction (2004/37/CE, 2017/164/EU). (9) = Respirable fraction (2004/37/CE, 2017/164/EU). (11) = Inhalable fraction (2004/37/CE). (12) = Inhalable fraction. Respirable fraction in those Member States that implement, on the date of the entry into force of this Directive, a biomonitoring system with a biological limit value not exceeding 0,002 mg Cd/g creatinine in urine (2004/37/CE). |
 WEL-STEL = Workplace Exposure Limit - Short-term exposure limit - 15-minute reference period (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).

(EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU:

(8) = Inhalable fraction (2004/37/EC, 2017/164/EU). (9) = Respirable fraction (2004/37/EC, 2017/164/EU). (10) = Short-term exposure limit value in relation to a reference period of 1 minute (2017/164/EU). |

| BMGV = Biological monitoring guidance value (EH40/2005 Workplace exposure limits (Fourth Edition 2020)).

(EU) = Directive 98/24/EC or 2004/37/EC or SCOEL (Biological Limit Value - BLV, Recommendation from the Scientific Committee on Occupational Exposure Limits (SCOEL)) |

| Other information (EH40/2005 Workplace exposure limits (Fourth Edition 2020)): Sen = Capable of causing occupational asthma. Sk = Can be absorbed through skin. Carc = Capable of causing cancer and/or heritable genetic damage.

(EU) = Directive 91/322/EEC, 98/24/EC, 2000/39/EC, 2004/37/EC, 2006/15/EC, 2009/161/EU, 2017/164/EU or 2019/1831/EU:

(13) = The substance can cause sensitisation of the skin and of the respiratory tract (2004/37/CE), (14) = The substance can cause sensitisation of the skin (2004/37/CE).

8.2 Exposure controls 8.2.1 Appropriate engineering controls

Ensure good ventilation. This can be achieved by local suction or general air extraction.

If this is insufficient to maintain the concentration under the WEL or AGW values, suitable breathing protection should be worn. Applies only if maximum permissible exposure values are listed here.

Suitable assessment methods for reviewing the effectiveness of protection measures adopted include metrological and non-metrological investigative techniques.

These are specified by e.g. EN 14042.

EN 14042 "Workplace atmospheres. Guide for the application and use of procedures for the assessment of exposure to chemical and biological agents".

8.2.2 Individual protection measures, such as personal protective equipment

General hygiene measures for the handling of chemicals are applicable.

Wash hands before breaks and at end of work.

Keep away from food, drink and animal feedingstuffs.

Remove contaminated clothing and protective equipment before entering areas in which food is consumed.

Page 8 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

Eye/face protection: Tight fitting protective goggles with side protection (EN 166).

Skin protection - Hand protection: Chemical resistant protective gloves (EN ISO 374). If applicable Protective nitrile gloves (EN ISO 374). Permeation time (penetration time) in minutes: >480 Minimum layer thickness in mm: 0,4 Protective hand cream recommended.

The breakthrough times determined in accordance with EN 16523-1 were not obtained under practical conditions. The recommended maximum wearing time is 50% of breakthrough time.

Skin protection - Other: Protective working garments (e.g. safety shoes EN ISO 20345, long-sleeved protective working garments).

Respiratory protection: Normally not necessary. If OES or MEL is exceeded. Filter A2 P2 (EN 14387), code colour brown, white Observe wearing time limitations for respiratory protection equipment.

Thermal hazards: Not applicable

ആ

Additional information on hand protection - No tests have been performed.

In the case of mixtures, the selection has been made according to the knowledge available and the information about the contents. Selection of materials derived from glove manufacturer's indications.

Final selection of glove material must be made taking the breakthrough times, permeation rates and degradation into account. Selection of a suitable glove depends not only on the material but also on other quality characteristics and varies from manufacturer to manufacturer.

In the case of mixtures, the resistance of glove materials cannot be predicted and must therefore be tested before use. The exact breakthrough time of the glove material can be requested from the protective glove manufacturer and must be observed.

8.2.3 Environmental exposure controls

No information available at present.

SECTION 9: Physical and chemical properties

9.1 Information on basic physical and chemical properties

Physical state:	Liquid
Colour:	Orange, Clear
Odour:	Characteristic
Melting point/freezing point:	There is no information available on this parameter.
Boiling point or initial boiling point and boiling range:	There is no information available on this parameter.
Flammability:	Flammable
Lower explosion limit:	There is no information available on this parameter.
Upper explosion limit:	There is no information available on this parameter.
Flash point:	112 °C
Auto-ignition temperature:	There is no information available on this parameter.
Decomposition temperature:	There is no information available on this parameter.
pH:	Mixture is non-soluble (in water).
Kinematic viscosity:	133,81 mm2/s (40°C)
Solubility:	Insoluble
Partition coefficient n-octanol/water (log value):	Does not apply to mixtures.
Vapour pressure:	There is no information available on this parameter.
Density and/or relative density:	0,899 g/cm3 (20°C)
Relative vapour density:	There is no information available on this parameter.
Particle characteristics:	Does not apply to liquids.

Page 9 of 21

œ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

9.2 Other information

Explosives: Oxidising liquids: There is no information available on this parameter. There is no information available on this parameter.

SECTION 10: Stability and reactivity

10.1 Reactivity

The product has not been tested. **10.2 Chemical stability** Stable with proper storage and handling. **10.3 Possibility of hazardous reactions** No dangerous reactions are known. **10.4 Conditions to avoid** Strong heat **10.5 Incompatible materials** Avoid contact with strong oxidizing agents. **10.6 Hazardous decomposition products** No decomposition when used as directed.

SECTION 11: Toxicological information

11.1. Information on hazard classes as defined in Regulation (EC) No 1272/2008

Possibly more information on health effects, see Section 2.1 (classification).

Pro-Line Oel-Verlust-Stop						
Pro-Line Oil Loss Stop						
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	ATE	>2000	mg/kg			calculated value
Acute toxicity, by dermal route:	ATE	>2000	mg/kg			calculated value
Acute toxicity, by inhalation:	ATE	>20	mg/l/4h			Vapours, calculated value
Acute toxicity, by inhalation:	ATE	>5	mg/l/4h			Aerosol, calculated value
Skin corrosion/irritation:						n.d.a.
Serious eye damage/irritation:						n.d.a.
Respiratory or skin sensitisation:						n.d.a.
Germ cell mutagenicity:						n.d.a.
Carcinogenicity:						n.d.a.
Reproductive toxicity:						n.d.a.
Specific target organ toxicity - single exposure (STOT-SE):						n.d.a.
Specific target organ toxicity - repeated exposure (STOT-RE):						n.d.a.
Aspiration hazard:						n.d.a.
Symptoms:						n.d.a.

Distillates (petroleum), hydrotreated heavy paraffinic								
Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes		
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 420 (Acute Oral	Analogous		
					toxicity - Fixe Dose	conclusion		
					Procedure)			
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	Analogous		
					Dermal Toxicity)	conclusion		
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol,		
					Inhalation Toxicity)	Analogous		
						conclusion		

B Page 10 of 21

			Rabbit	OECD 404 (Acute Dermal	Not irritant, Analogous
					conclusion
			Rabbit		Not irritant,
				Irritation/Corrosion)	Analogous
					conclusion
			Guinea pig	OFCD 406 (Skin	No (skin
					contact),
					Analogous
					conclusion
			Salmonella	OFCD 471 (Bacterial	Negative,
					Analogous
			typnintanan	Reverse mutation rest)	conclusion
				OECD 473 (In Vitro	Negative,
					Analogous
					conclusion
					Chinese hamste
			Mauraa		
			wouse		Negative,
					Analogous
					conclusion
			Mouse		Negative,
					Analogous
					conclusion
			Mouse		Negative,
				(Carcinogenicity Studies)	Analogous
					conclusion 78
					weeks, dermal
			Rat		Negative,
					Analogous
					conclusion oral
			Rat	i.	Negative,
					Analogous
				Study)	conclusion
					dermal
LOAEL	125	mg/kg	Rat	OECD 408 (Repeated	Analogous
				Dose 90-Day Oral	conclusion
				Toxicity Study in	
				Rodents)	
NOAEL	1000	mg/kg	Rabbit	OECD 410 (Repeated	Analogous
				Dose Dermal Toxicity -	conclusion
NOAEL	0,22	mg/l	Rat		Dust, Mist,
					Analogous
					conclusion 4
					weeks
					Asp. Tox. 1
					gastrointestinal
					disturbances,
					diarrhoea
		NOAEL 1000	NOAEL 1000 mg/kg	NOAEL 1000 mg/kg Rabbit	Image: Second

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	
					Toxicity)	
Acute toxicity, by dermal route:	LD50	>2000	mg/kg	Rabbit	OECD 402 (Acute	
					Dermal Toxicity)	
Acute toxicity, by inhalation:	LC50	>5	mg/l/4h	Rat	OECD 403 (Acute	Aerosol
					Inhalation Toxicity)	
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant
					Dermal	
					Irritation/Corrosion)	

B Page 11 of 21

Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant
					Irritation/Corrosion)	
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin contact)
sensitisation:					Sensitisation)	
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative
					Mammalian Cell Gene	
					Mutation Test)	
Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative
				typhimurium	Reverse Mutation Test)	
Carcinogenicity:						Negative
Reproductive toxicity	NOAEL	>5000	mg/kg	Rat	OECD 414 (Prenatal	Negative
(Developmental toxicity):			bw/d		Developmental Toxicity	
					Study)	
Aspiration hazard:						Yes
Symptoms:						nausea, vomiting

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral Toxicity)	Analogous conclusion
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute Dermal Toxicity)	Analogous
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute Inhalation Toxicity)	Aerosol, Analogous conclusion
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute Dermal Irritation/Corrosion)	Not irritant, Analogous conclusion
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye Irritation/Corrosion)	Not irritant, Analogous conclusion
Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	No (skin contact), Analogous conclusion
Germ cell mutagenicity:				Salmonella typhimurium	OECD 471 (Bacterial Reverse Mutation Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	Negative, Analogous conclusionChine e hamster
Carcinogenicity:				Mouse	OECD 451 (Carcinogenicity Studies)	Negative, Analogous conclusionderma
Reproductive toxicity:	NOAEL	1000	mg/kg bw/d	Rat	OECD 421 (Reproduction/Developm ental Toxicity Screening Test)	Analogous conclusionderma
Reproductive toxicity (Developmental toxicity):				Rat	OECD 414 (Prenatal Developmental Toxicity Study)	Negative, Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), oral:	NOAEL	125	mg/kg bw/d	Rat	OECD 408 (Repeated Dose 90-Day Oral Toxicity Study in Rodents)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	<30	mg/kg bw/d	Rat	OECD 411 (Subchronic Dermal Toxicity - 90-day Study)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	1000	mg/kg	Rabbit	OECD 410 (Repeated Dose Dermal Toxicity - 90-Day)	Analogous conclusion

Safety data sheet according to Re Revision date / version: 16.08.202 Replacing version dated / version Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop	24 / 0022	,	, Annex II			
Specific target organ toxicity - repeated exposure (STOT-RE), inhalat.:	NOAEL	0,05	mg/l	Rat	OECD 412 (Subacute Inhalation Toxicity - 28- Day Study)	Aerosol, Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), inhalat.:	NOAEL	0,15	mg/l	Rat		Aerosol, Analogous conclusion13 weeks
Aspiration hazard:						Yes
Distillatos (notroloum), solvent	dowoyod ho	our poroffinio				
Distillates (petroleum), solvent- Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	Holes
					Toxicity)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute Dermal Toxicity)	
Acute toxicity, by inhalation:	LD50	>5,53	mg/l/4h	Rat	OECD 403 (Acute Inhalation Toxicity)	Aerosol
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute Dermal Irritation/Corrosion)	Not irritant, Analogous conclusion
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye Irritation/Corrosion)	Not irritant, Analogous conclusion
Respiratory or skin sensitisation:				Guinea pig	OECD 406 (Skin Sensitisation)	No (skin contact), Analogous conclusion
Germ cell mutagenicity:				Mouse	OECD 474 (Mammalian Erythrocyte Micronucleus Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro Mammalian Chromosome Aberration Test)	Negative, Analogous conclusion Chinese hamster
Germ cell mutagenicity:				Salmonella typhimurium	OECD 471 (Bacterial Reverse Mutation Test)	Negative, Analogous conclusion
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro Mammalian Cell Gene Mutation Test)	Negative, Analogous conclusion
Carcinogenicity:				Mouse	,	Female, Negative
Carcinogenicity:				Mouse	OECD 451 (Carcinogenicity Studies)	Negative, Analogous conclusion 78 weeks, dermal
Reproductive toxicity:				Rat		Negative
Reproductive toxicity (Developmental toxicity):				Rat	OECD 414 (Prenatal Developmental Toxicity Study)	Negative, Analogous conclusion dermal
Reproductive toxicity (Effects on fertility):				Rat	OECD 421 (Reproduction/Developm ental Toxicity Screening Test)	Negative, Analogous conclusion oral, dermal
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	30	mg/kg/d	Rat	OEĆD 411 (Subchronic Dermal Toxicity - 90-day Study)	Analogous conclusion
Specific target organ toxicity - repeated exposure (STOT-RE), dermal:	NOAEL	~1000	mg/kg bw/d	Rabbit	OECD 410 (Repeated Dose Dermal Toxicity - 90-Day)	Analogous conclusion

rœ-

Page 13 of 21
Safety data sheet according to Regulation (EC) No 1907/2006, Annex II
Revision date / version: 16.08.2024 / 0022
Replacing version dated / version: 12.11.2023 / 0021
Valid from: 16.08.2024
PDF print date: 19.08.2024
Pro-Line Oel-Verlust-Stop
Pro-Line Oil Loss Stop

œ

Specific target organ toxicity -	NOAEL	0,22	mg/l	Rat	Aerosol,
repeated exposure (STOT-RE),					Analogous
inhalat.:					conclusion 4
					weeks
Specific target organ toxicity -	NOAEL	0,15	mg/l	Rat	Aerosol,
repeated exposure (STOT-RE),					Analogous
inhalat.:					conclusion 13
					weeks
Aspiration hazard:					Yes
Symptoms:					mucous
					membrane
					irritation,
					dizziness,
					nausea

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	>5000	mg/kg	Rat	OECD 401 (Acute Oral	
					Toxicity)	
Acute toxicity, by dermal route:	LD50	>5000	mg/kg	Rabbit	OECD 402 (Acute	
					Dermal Toxicity)	
Acute toxicity, by inhalation:	LC50	>5,53	mg/l/4h	Rat	OECD 403 (Acute	Aerosol
			_		Inhalation Toxicity)	
Skin corrosion/irritation:				Rabbit	OECD 404 (Acute	Not irritant
					Dermal	
					Irritation/Corrosion)	
Serious eye damage/irritation:				Rabbit	OECD 405 (Acute Eye	Not irritant
, .					Irritation/Corrosion)	
Respiratory or skin				Guinea pig	OECD 406 (Skin	No (skin contact)
sensitisation:				10	Sensitisation)	· · · · · ·
Germ cell mutagenicity:				Salmonella	OECD 471 (Bacterial	Negative
5 ,				typhimurium	Reverse Mutation Test)	0
Germ cell mutagenicity:				Mammalian	OECD 474 (Mammalian	Negative
					Erythrocyte	0
					Micronucleus Test)	
Germ cell mutagenicity:				Mammalian	OECD 473 (In Vitro	Negative,
5 ,					Mammalian	Analogous
					Chromosome	conclusion
					Aberration Test)	Chinese hamste
Germ cell mutagenicity:				Mouse	OECD 476 (In Vitro	Negative
5 ,					Mammalian Cell Gene	0
					Mutation Test)	
Reproductive toxicity:	NOAEL	>1000	mg/kg	Rat	OECD 421	Negative
			bw/d		(Reproduction/Developm	0
					ental Toxicity Screening	
					Test)	
Reproductive toxicity:	NOAEL	>2000	mg/kg	Rat	OECD 414 (Prenatal	
1			bw/d		Developmental Toxicity	
					Study)	
Aspiration hazard:						Yes
Symptoms:						drying of the
						skin., vomiting,
						nausea

Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Acute toxicity, by oral route:	LD50	1880	mg/kg	Rat	OECD 401 (Acute Oral	
					Toxicity)	
Acute toxicity, by oral route:	ATE	1880	mg/kg			
Acute toxicity, by dermal route:	ATE	1500	mg/kg			
Acute toxicity, by dermal route:	LD50	1500	mg/kg	Rabbit		
Acute toxicity, by inhalation:	LD50	>2,7	mg/l/4h	Rat		Mist
Acute toxicity, by inhalation:	ATE	11	mg/l/4h			Vapours

Page 14 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

œ

Acute toxicity, by inhalation:	ATE	1,5	mg/l/4h			Dusts or mist
	AIL	1,5	1119/1/411	Dahhit		
Skin corrosion/irritation:				Rabbit		Not irritant
Serious eye damage/irritation:				Rabbit		Not irritant
Respiratory or skin				Guinea pig		Not sensitizising
sensitisation:						
Specific target organ toxicity -					OECD 408 (Repeated	Negative
repeated exposure (STOT-RE):					Dose 90-Day Oral	
					Toxicity Study in	
					Rodents)	
Symptoms:					Redentay	breathing
Symptoms.						difficulties,
						,
						headaches,
						gastrointestinal
						disturbances,
						mucous
						membrane
						irritation,
						dizziness,
						nausea and
			1			vomitina.

11.2. Information on other hazards

Pro-Line Oil Loss Stop Toxicity / effect	Endpoint	Value	Unit	Organism	Test method	Notes
Endocrine disrupting properties:	•					Does not apply to mixtures.
Other information:						No other relevant information available on adverse effects on health.

SECTION 12: Ecological information

Pro-Line Oil Loss Stop Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:							n.d.a.
12.1. Toxicity to daphnia:							n.d.a.
12.1. Toxicity to algae:							n.d.a.
12.2. Persistence and							Isolate as much
degradability:							as possible with
							an oil separator.
12.3. Bioaccumulative							n.d.a.
potential:							
12.4. Mobility in soil:							n.d.a.
12.5. Results of PBT							n.d.a.
and vPvB assessment							
12.6. Endocrine							Does not apply
disrupting properties:							to mixtures.
12.7. Other adverse							No information
effects:							available on
							other adverse
							effects on the
							environment.
Other information:							According to the
							recipe, contains
							no AOX.

Safety data sheet accordir Revision date / version: 16 Replacing version dated / Valid from: 16.08.2024 PDF print date: 19.08.2024	8.08.2024 / 0022 version: 12.11.20	,					
Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop							
Other information:							DOC-eliminatio degree(comple: ng organic substance)>= 80%/28d: No
Distillates (petroleum), h	vdrotreated hea	vv paraffi	nic				
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)	Analogous conclusion
12.1. Toxicity to fish:	NOEC/NOEL	28d	>1000	mg/l	Oncorhynchus mykiss	QSÁR	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	QSAR	Analogous conclusion
12.1. Toxicity to daphnia:	EC50	48h	>1000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	Analogous conclusion
12.1. Toxicity to algae:	EC50	48h	>100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.2. Persistence and degradability:		28d	31	%	activated sludge	OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Not readily biodegradable, Analogous conclusion
12.2. Persistence and degradability:		28d	6	%		OECD 301 B (Ready Biodegradability - Co2 Evolution Test)	Not readily biodegradable
12.3. Bioaccumulative potential:	Log Pow		3,9-6			1000	High
12.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substanc
Other information:	AOX		0	%			
White mineral oil (Natura	l oil)						
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	>10000	mg/l	Lepomis macrochirus		
12.1. Toxicity to fish:	NOEC/NOEL	96h	>=100	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)	
2.1. Toxicity to daphnia:	NOEC/NOEL	48h	>=100	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	
12.1. Toxicity to daphnia:	EC50	48h	>100	mg/l	Daphnia magna		
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition	

OB ______ Page 16 of 21

12.2. Persistence and	28d	24	%	OECD 301 B	Not readily
degradability:				(Ready	biodegradable
				Biodegradability -	
				Co2 Evolution	
				Test)	
12.4. Mobility in soil:					Product floats on
					the water
					surface.
12.5. Results of PBT					No PBT
and vPvB assessment					substance, No
					vPvB substance

Foxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	NOEC/NOEL	28d	>1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Pimephales promelas	OECD 203 (Fish, Acute Toxicity Test)	Analogous conclusion
12.1. Toxicity to fish:	NOEC/NOEL	14d	1000	mg/l	Oncorhynchus mykiss	QSAR	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211 (Daphnia magna Reproduction Test)	Analogous conclusion
12.1. Toxicity to daphnia:	EL50	48h	> 10000	mg/l	Daphnia magna	OECD 202 (Daphnia sp. Acute Immobilisation Test)	Analogous conclusion
12.1. Toxicity to algae:	NOEC/NOEL	72h	>=100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.1. Toxicity to algae:	EC50	72h	>100	mg/l	Pseudokirchneriell a subcapitata	OECD 201 (Alga, Growth Inhibition Test)	Analogous conclusion
12.2. Persistence and degradability:		28d	31	%	activated sludge	OECD 301 F (Ready Biodegradability - Manometric Respirometry Test)	Not readily biodegradable, Analogous conclusion
12.3. Bioaccumulative potential:	Log Pow		>6				@20°C
12.3. Bioaccumulative potential:							Not to be expected
2.5. Results of PBT and vPvB assessment							No PBT substance, No vPvB substanc
Other information:							The product ca be extensively eliminated from water via abioti processes (e.g adsorption on activated sludo

Distillates (petroleum), solvent-dewaxed heavy paraffinic										
Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes			
12.1. Toxicity to fish:	LC50	96h	>1000	mg/l	Salmo gairdneri					
12.1. Toxicity to fish:	LC50	96h	>5000	mg/l	Oncorhynchus mykiss	OECD 203 (Fish, Acute Toxicity Test)				
12.1. Toxicity to fish:	NOEC/NOEL	21d	1000	mg/l	Oncorhynchus mykiss	QSÁR				

Page 17 of 21

œ.

12.1. Toxicity to fish:	LC50	96h	>100	mg/l	Pimephales	OECD 203 (Fish,	Analogous
					promelas	Acute Toxicity	conclusion
						Test)	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211	Analogous
						(Daphnia magna	conclusion
						Reproduction Test)	
12.1. Toxicity to daphnia:	EC50	48h	>1000	mg/l	Daphnia magna	OECD 202	Analogous
						(Daphnia sp.	conclusion
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to algae:	EC50	96h	>1000	mg/l	Scenedesmus		
					subspicatus		
12.2. Persistence and		28d	6	%		OECD 301 B	Analogous
degradability:						(Ready	conclusion
						Biodegradability -	
						Co2 Evolution	
						Test)	
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Not readily
degradability:						(Ready	biodegradable
						Biodegradability -	(Analogous
						Manometric	conclusion)
						Respirometry Test)	-
12.3. Bioaccumulative	Log Pow		>3				Low
potential:							
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
	-						vPvB substance
Toxicity to bacteria:	EC20	6h	>1000	mg/l	Pseudomonas		
					fluorescens		

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LL50	96h	>100	mg/l	Pimephales	OECD 203 (Fish,	
					promelas	Acute Toxicity	
						Test)	
12.1. Toxicity to daphnia:	EL50	48h	>10000	mg/l	Daphnia magna	OECD 202	
						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to daphnia:	LL50	48h	>1000	mg/l	Gammarus sp.	OECD 202	
						(Daphnia sp.	
						Acute	
						Immobilisation	
						Test)	
12.1. Toxicity to daphnia:	NOEC/NOEL	21d	10	mg/l	Daphnia magna	OECD 211	
						(Daphnia magna	
						Reproduction Test)	
12.1. Toxicity to algae:	NOEC/NOEL	72h	>100	mg/l	Pseudokirchneriell	OECD 201 (Alga,	
					a subcapitata	Growth Inhibition	
			-			Test)	
12.2. Persistence and		28d	31	%	activated sludge	OECD 301 F	Inherent
degradability:						(Ready	
						Biodegradability -	
						Manometric	
						Respirometry Test)	
12.3. Bioaccumulative potential:	Log Pow		>3				Low
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
							vPvB substance

Page 18 of 21

œ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

2-butoxyethyl acetate

Toxicity / effect	Endpoint	Time	Value	Unit	Organism	Test method	Notes
12.1. Toxicity to fish:	LC50	96h	28	mg/l	Oncorhynchus	OECD 203 (Fish,	
-					mykiss	Acute Toxicity	
						Test)	
12.1. Toxicity to daphnia:	EC50	48h	37	mg/l	Daphnia pulex	DIN 38412 T.11	
12.1. Toxicity to algae:	EC50	72h	1570	mg/l	Pseudokirchneriell a subcapitata	ISO/DIS 8692	
12.2. Persistence and		28d	88	%	activated sludge	OECD 301 F	Readily
degradability:						(Ready	biodegradable
-						Biodegradability -	•
						Manometric	
						Respirometry Test)	
12.3. Bioaccumulative	Log Pow		1,51			OECD 107	A notable
potential:						(Partition	biological
						Coefficient (n-	accumulation
						octanol/water) -	potential is not to
						Shake Flask	be expected
						Method)	(LogPow 1-3).
12.3. Bioaccumulative potential:	BCF		<100				Low
12.4. Mobility in soil:	Koc		26-224				HighEstimated
12.5. Results of PBT							No PBT
and vPvB assessment							substance, No
							vPvB substance
Toxicity to bacteria:	EC50	17h	964	mg/l	Pseudomonas putida	DIN 38412 T.8	

SECTION 13: Disposal considerations

13.1 Waste treatment methods

For the substance / mixture / residual amounts

Soaked polluted cloths, paper or other organic materials represent a fire hazard and should be controlled, collected and disposed of. EC disposal code no .:

The waste codes are recommendations based on the scheduled use of this product.

Owing to the user's specific conditions for use and disposal, other waste codes may be

allocated under certain circumstances. (2014/955/EU)

13 02 05 mineral-based non-chlorinated engine, gear and lubricating oils

Recommendation:

Sewage disposal shall be discouraged.

Pay attention to local and national official regulations.

Implement substance recycling.

E.g. suitable incineration plant.

For contaminated packing material

Pay attention to local and national official regulations.

Empty container completely. Uncontaminated packaging can be recycled.

Dispose of packaging that cannot be cleaned in the same manner as the substance.

SECTION 14: Transport information

General statements

Transport by road/by rail (ADR/RID)

14.1. UN number or ID number: 14.2. UN proper shipping name: Not applicable 14.3. Transport hazard class(es): 14.4. Packing group: 14.5. Environmental hazards:

Not applicable

Not applicable Not applicable Not applicable

Page 19 of 21

ആ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

Tunnel restriction code: Not applicable Classification code: Not applicable IQ: Not applicable Transport category: Not applicable Transport by sea (IMDG-code) 14.1. UN number or ID number: Not applicable 14.2. UN proper shipping name: Not applicable 14.3. Transport hazard class(es): Not applicable 14.4. Packing group: Not applicable 14.5. Environmental hazards: Not applicable Marine Pollutant: Not applicable EmS: Not applicable Transport by air (IATA) 14.1. UN number or ID number: Not applicable 14.2. UN proper shipping name: Not applicable 14.3. Transport hazard class(es): Not applicable 14.4. Packing group: Not applicable 14.5. Environmental hazards: Not applicable 14.6. Special precautions for user Unless specified otherwise, general measures for safe transport must be followed. 14.7. Maritime transport in bulk according to IMO instruments

Non-dangerous material according to Transport Regulations.

SECTION 15: Regulatory information

15.1 Safety, health and environmental regulations/legislation specific for the substance or mixture

9.03 %

Observe restrictions:

Comply with national regulations/laws governing maternity protection (national implementation of the Directive 92/85/EEC)! General hygiene measures for the handling of chemicals are applicable.

Directive 2010/75/EU (VOC):

National requirements/regulations on safety and health protection must be applied when using work equipment.

15.2 Chemical safety assessment

A chemical safety assessment is not provided for mixtures.

SECTION 16: Other information

Revised sections:

2, 3, 5, 8, 11, 12, 15

Classification and processes used to derive the classification of the mixture in accordance with the ordinance (EG) 1272/2008 (CLP): Not applicable

The following phrases represent the posted Hazard Class and Risk Category Code (GHS/CLP) of the product and the constituents. H302 Harmful if swallowed. H304 May be fatal if swallowed and enters airways. H312 Harmful in contact with skin. H332 Harmful if inhaled.

Asp. Tox. — Aspiration hazard Acute Tox. — Acute toxicity - oral Acute Tox. — Acute toxicity - dermal Acute Tox. — Acute toxicity - inhalation

Page 20 of 21

ആ

Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop

Key literature references and sources for data:

Regulation (EC) No 1907/2006 (REACH) and Regulation (EC) No 1272/2008 (CLP) as amended.

Guidelines for the preparation of safety data sheets as amended (ECHA).

Guidelines on labelling and packaging according to the Regulation (EG) Nr. 1272/2008 (CLP) as amended (ECHA).

Safety data sheets for the constituent substances.

ECHA Homepage - Information about chemicals.

GESTIS Substance Database (Germany).

German Environment Agency "Rigoletto" information site on substances that are hazardous to water (Germany).

EU Occupation Exposure Limits Directives 91/322/EEC, 2000/39/EC, 2006/15/EC, 2009/161/EU, (EU) 2017/164, (EU) 2019/1831, each as amended.

National Lists of Occupational Exposure Limits for each country as amended.

Regulations on the transport of hazardous goods by road, rail, sea and air (ADR, RID, IMDG, IATA) as amended.

Any abbreviations and acronyms used in this document:

according, according to acc., acc. to Accord européen relatif au transport international des marchandises Dangereuses par Route (= European Agreement concerning the ADR International Carriage of Dangerous Goods by Road) AOX Adsorbable organic halogen compounds approx. approximately Article number Art., Art. no. ASTM ASTM International (American Society for Testing and Materials) ATE Acute Toxicity Estimate BAM Bundesanstalt für Materialforschung und -prüfung (= Federal Institute for Materials Research and Testing, Germany) BAuA Bundesanstalt für Arbeitsschutz und Arbeitsmedizin (= Federal Institute for Occupational Health and Safety, Germany) BCF **Bioconcentration factor** BSEF The International Bromine Council CAS **Chemical Abstracts Service** CLP Classification, Labelling and Packaging (REGULATION (EC) No 1272/2008 on classification, labelling and packaging of substances and mixtures) CMR carcinogenic, mutagenic, reproductive toxic DMEL Derived Minimum Effect Level DNEL Derived No Effect Level DOC Dissolved organic carbon for example (abbreviation of Latin 'exempli gratia'), for instance e.q. EbCx, EyCx, EbLx (x = 10, 50) Effect Concentration/Level of x % on reduction of the biomass (algae, plants) European Community FC ECHA European Chemicals Agency ECx, ELx (x = 0, 3, 5, 10, 20, 50, 80, 100) Effect Concentration/Level for x % effect EEC European Economic Community European Inventory of Existing Commercial Chemical Substances EINECS ELINCS European List of Notified Chemical Substances ΕN **European Norms** EPA United States Environmental Protection Agency (United States of America) $ErCx, E\mu Cx, ErLx (x = 10, 50)$ Effect Concentration/Level of x % on inhibition of the growth rate (algae, plants) etc. et cetera EU **European Union** EVAL Ethylene-vinyl alcohol copolymer Fax. Fax number gen. general Globally Harmonized System of Classification and Labelling of Chemicals GHS GWP Global warming potential Adsorption coefficient of organic carbon in the soil Koc octanol-water partition coefficient Kow IARC International Agency for Research on Cancer IATA International Air Transport Association IBC (Code) International Bulk Chemical (Code) IMDG-code International Maritime Code for Dangerous Goods including, inclusive incl. **IUCLID** International Uniform Chemical Information Database

ആ Page 21 of 21 Safety data sheet according to Regulation (EC) No 1907/2006, Annex II Revision date / version: 16.08.2024 / 0022 Replacing version dated / version: 12.11.2023 / 0021 Valid from: 16.08.2024 PDF print date: 19.08.2024 Pro-Line Oel-Verlust-Stop Pro-Line Oil Loss Stop IUPAC International Union for Pure Applied Chemistry LC50 Lethal Concentration to 50 % of a test population LD50 Lethal Dose to 50% of a test population (Median Lethal Dose) Log Koc Logarithm of adsorption coefficient of organic carbon in the soil Log Kow, Log Pow Logarithm of octanol-water partition coefficient LQ Limited Quantities MARPOL International Convention for the Prevention of Marine Pollution from Ships mg/kg bw mg/kg body weight mg/kg bw/d, mg/kg bw/day mg/kg body weight/day mg/kg dry weight mg/kg dw mg/kg wwt mg/kg wet weight not applicable n.a. not available n.av. not checked n.c. n.d.a. no data available NIOSH National Institute for Occupational Safety and Health (USA) NLP No-longer-Polymer NOEC, NOEL No Observed Effect Concentration/Level OECD Organisation for Economic Co-operation and Development org. organic OSHA Occupational Safety and Health Administration (USA) PBT persistent, bioaccumulative and toxic PF Polyethylene PNEC Predicted No Effect Concentration parts per million ppm PVC Polyvinylchloride REACHRegistration, Evaluation, Authorisation and Restriction of Chemicals (REGULATION (EC) No 1907/2006 concerning the Registration, Evaluation, Authorisation and Restriction of Chemicals) **REACH-IT List-No.** 6/7/8/9xx-xxx-x No. is automatically assigned, e.g. to pre-registrations without a CAS No. or other numerical identifier. List Numbers do not have any legal significance, rather they are purely technical identifiers for processing a submission via REACH-IT. RID Règlement concernant le transport International ferroviaire de marchandises Dangereuses (= Regulation concerning the International Carriage of Dangerous Goods by Rail) SVHC Substances of Very High Concern Telephone Tel. TOC Total organic carbon United Nations Recommendations on the Transport of Dangerous Goods UN RTDG VOC Volatile organic compounds vPvB very persistent and very bioaccumulative

The statements made here should describe the product with regard to the necessary safety precautions - they are not meant to guarantee definite characteristics - but they are based on our present up-to-date knowledge. No responsibility.

These statements were made by:

Chemical Check GmbH, Chemical Check Platz 1-7, D-32839 Steinheim, Tel.: +49 5233 94 17 0, Fax: +49 5233 94 17 90

© by Chemical Check GmbH Gefahrstoffberatung. The copying or changing of this document is forbidden except with consent of the Chemical Check GmbH Gefahrstoffberatung.